Maximum: 80 Marks

D 111972	(Pages : 3)	Name
		Reg. No

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2024

Mathematics

MTS 3B 03—CALCULUS OF SINGLE VARIABLE—2

(2019—2023 Admissions)

Time: Two Hours and a Half

Section A

All questions can be attended. Each question carries 2 marks.

- 1. Differentiate the function $f(x) = \log\left(\frac{x}{\ln(x)}\right)$.
- 2. Find the derivative of $y = \log(|\sec(x) + \tan(x)|)$.
- 3. Find $\lim_{x\to 0} \frac{1-\cos x}{1-\cos(2x)}$.
- 4. Show that $\cosh^2 x \sinh^2 x = 1$.
- 5. Find $\lim_{n\to\infty} e^{\frac{1+n}{1-n}}$.
- 6. Determine whether the sequence $a_n = 1 + (-1)^n / n^2$ converges or diverges. If it converges, find the limit.
- 7. Express $.111\overline{1}...$ as a rational number.
- 8. State the Squeeze Theorem.
- 9. By using the power series expansion of $\sin x$, show that $\frac{d}{dx}(\sin x) = \cos x$.
- 10. Find the Maclaurian series expansion of $\frac{1}{1+x}$.
- 11. Find the rectangular equation of a curve whose parametric equation is x = t + 1, $y = t^2 1$.
- 12. Find the equation of the tangent to the ellipse $x = 3\cos t$, $y = 2\sin t$ at $t = \pi/4$.
- 13. Find an equation of the line that passes through the point (-1, 0, 2) and is parallel to the vector (1, 5, -4).

Turn over

D 111972

14. Find the equation of the surface $z = x^2 + y^2$ in cylindrical co-ordinates.

15. Find r'(t) if $r(t) = 2\cos ti + 3\sin tj + 3tk$.

 $(15 \times 2 = 30 \text{ marks})$ Max. Ceiling: 25 marks

Section B

All questions can be attended. Each question carries 5 marks.

16. Evaluate:

(i)
$$\lim_{x \to 0} \frac{\tan 5x}{\sin 2x}.$$

(ii)
$$\lim_{x\to 0} \frac{x^3 - 3\sin^2 x}{x^2}$$
.

- 17. Find the derivative of $y = (\cos x)^x$.
- 18. Find $\int x^2 e^{-x} dx$.
- 19. Use the integral test to determine the series $\sum_{1}^{\infty} \frac{1}{n^2}$ converge or diverge.
- 20. Find the interval of convergence and radius of convergence of the power series $\sum_{0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$.
- 21. Find the Maclaurian series for $\frac{1}{\sqrt{1-x}}$ and determine its interval of convergence.
- 22. Find $\frac{d^2y}{dx^2}$ for the parametric equation $x = a \cos t$, $y = b \sin t$.
- 23. Identify and sketch the graph of the surface $x^2 x^2 y^2 = 1$.

 $(8 \times 5 = 40 \text{ marks})$ Max. Ceiling: 35 marks

Section C

Answer any **two** questions. Each question carries 10 marks.

24. (i) Show that
$$\int \frac{dx}{\sqrt{4x^2 - 9}} dx = \frac{1}{2} \cosh^{-1}(\frac{2x}{3}), x > 3/2.$$

(ii) Find
$$\int_{-\infty}^{0} \frac{e^x}{\sqrt{1+e^{2x}}} dx.$$

(iii) Find
$$\lim_{x\to 0} (\tan x)^x$$
.

3 D 111972

- 25. (i) Let C be the ellipse $r(t) = 3\cos t + 2\sin t$. Find T(t) and N(t) at $t = \pi/4$.
 - (ii) Find the curvature of the curve $r(t) = ti + \frac{1}{t}j$ at t = 1.
- 26. (i) Find the total arc length of the cardioid $r = 1 \cos \theta$.
 - (ii) Find the area of the cardioid $r = 1 + \cos \theta$.
- 27. A shell fired from a cannon, has a muzzle speed of 80 ft/s. The barrel amkes an angle of 45° with the horizontal and, the barrel opening is assumed to be at ground level.
 - (a) Find parametric equation for the shell's trajectory.
 - (b) How high does the shell rise?
 - (c) How far does the shell travel horizontally?
 - (d) What is the speed of the shell at its point of impact with the ground.

 $(2 \times 10 = 20 \text{ marks})$

D 111972-A	(Pages: 5)	Name
		Reg. No

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2024

Mathematics

MTS 3B 03—CALCULUS OF SINGLE VARIABLE—2

(2019—2023 Admissions)

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MTS 3B 03—CALCULUS OF SINGLE VARIABLE—2

(Multiple Choice Questions for SDE Candidates)

1.
$$\frac{d}{dn}(\ln kx) =$$

(A) kx.

(B) $\frac{1}{kx}$.

(C) $\frac{1}{x}$.

- (D) $\frac{k}{\ln x}$.
- 2. Range of cos *hx* is ———
 - (A) [-1, 1].

(B) $(-\infty, \infty)$.

(C) $(-\infty, 1]$.

(D) $(-\infty, 1)$.

$$3. \quad \frac{d}{dx}\cosh^{-1}(x^2) = \underline{\hspace{1cm}}$$

(A) $2x \sinh^{-1}(x^2)$.

(B) $\frac{2x}{\sqrt{x^2 - 1}}$

(C) $\frac{x}{x^4-1}$.

(D) $\frac{2x}{\sqrt{x^4 - 1}}$

4.
$$\lim_{x\to 0} \frac{a^x - b^x}{x} = -$$

(A) $\ln\left(\frac{a}{b}\right)$.

(B) $\ln\left(\frac{b}{a}\right)$.

(C) $\ln(ab)$.

- (D) ∞ .
- 5. $\tan hx$ is function.
 - (A) Odd.

- (B) Even.
- (C) Neither even nor odd.
- (D) None of these.
- 6. The sequence $\{(-1)^{n+1}\}$ is :
 - (A) Converges.

- (B) Diverges.
- (C) Has a convergent subsequence. (D) None.

- 7. The sequence $\left\{\frac{1}{n}\right\}$ is:
 - (A) Diverges.

(B) Increasing.

(C) Decreasing.

(D) None of these.

- 8. What is true?
 - (I) Every bounded sequence is converged.
 - (II) Every converges sequence is bounded.
 - (A) I and II are True.
- (B) I is True II is False.
- (C) I is False II is True.
- (D) Both are False.

- 9. $\lim_{x\to\infty}\frac{3^n}{n^2}=\underline{\hspace{1cm}}.$
 - (A) 3.

(B) $\frac{3}{2}$

(C) 1.

- (D) ∞ .
- 10. $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = ---$
 - (A) 1.

(B) 0.

(C) e.

- (D) $\frac{1}{e}$
- 11. The series $\sum_{n=1}^{\infty} a_n$ converges, then :
 - (A) $\lim_{n\to\infty} a_n = c$, a constant.
- (B) $\lim_{n\to\infty} a_n = 0$.

(C) $\lim_{n\to\infty} a_n = \infty$.

- (D) $\lim_{n\to\infty} a_n$ does not exist.
- 12. Let $\{a_n\}$ of $\{b_n\}$ is such that $a_n \leq b_n$. Then :
 - (A) Σa_n converges if Σb_n converges.
 - (B) Σb_n converges if Σa_n converges.
 - (C) Σa_n converges if Σb_n diverges.
 - (D) Σb_n diverges if Σa_n diverges.

Turn over

13.
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$
 is:

- (A) Converges to 1.
- (B) Converges to 0.

(C) Diverges.

- (D) None of these.
- 14. Let $\{a_n\}$ be a sequence of positive terms such that $a_n \ge a_{n+1}$ and $\lim_{n\to\infty} a_n = 0$, then :
 - (A) Σa_n converges.
 - (B) $\sum (-1)^n a_n$ converges.
 - (C) Σa_n converges but $\sum (-1)^n a_n$ diverges.
 - (D) None of these.
- 15. The series $\sum_{n=0}^{\infty} x^n$ is:
 - (A) Converges absolutely for |x| < 1.
 - (B) Converges for |x| > 1.
 - (C) Has radius of converges ½.
 - (D) None of these.
- 16. Which of the following represent parametric equation of a circle:
 - (A) $(x = a \cos t, y = b \sin t)$.
- (B) $(x = a \cos t, y = a \sin t)$.
- (C) $(x = a \sec t, y = b \tan t)$.
- (D) None.
- 17. Tangent to the curve, $x = 4 \sin t$, $y = 2 \cos t$ at $t = \frac{\pi}{4}$ is :
 - (A) $-\frac{1}{2}$.

(B) $\frac{1}{2}$.

(C) -1.

- (D) 1.
- 18. The polar co-ordinate equal to $\left(3, \frac{\pi}{4}\right)$ is :
 - (A) $\left(-3, \frac{\pi}{4}\right)$.

(B) $\left(-3,9\frac{\pi}{4}\right)$.

(C) $\left(3,9\frac{\pi}{4}\right)$.

(D) $\left(3, 5\frac{\pi}{4}\right)$.

- 19. The equation $r^2 = \sin 2\theta$ is symmetric about :
 - (A) x axis.

(B) y-axis.

(C) Origin.

(D) The line $\theta = \frac{\pi}{4}$.

- 20. $\operatorname{Log}_{a}(a^{x}) = \underline{\hspace{1cm}}$
 - (A) a^x .

(B) a.

(C) x^a .

(D) x.