QP Code: P25B004	Reg. No	:	••••••
	Name	•	

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

II SEMESTER (CBCSS-PG) DEGREE EXAMINATION, MARCH 2025 M Sc Biotechnology GBT2C01: METABOLISM AND BASIC ENZYMOLOGY 2024 Admission Onwards

Time:3 Hours Maximum Weightage:30

Part A

Short answer type questions: Answer any four questions. Weightage 2 for each question. (4x2 = 8 Weightage)

1.	Comment on the biosynthesis of glutamate and its significance.	[BTL1]
2.	Define allosteric regulation and its significance in enzyme activity.	[BTL1]
3.	Explain how enzyme inhibitors affect the Lineweaver-Burk plot.	[BTL2]
4.	Use the knowledge of Citric acid cycle regulation to explain its response to high ATP levels.	[BTL3]
5.	Illustrate how targeted metabolomics aids in biomarker discovery for diabetes.	[BTL3]
6.	Compare and contrast the roles of gluconeogenesis and the Pentose Phosphate Pathway in maintaining glucose homeostasis.	[BTL4]
7.	Assess the physiological and industrial significance of zymogens and immobilized enzymes. How do they enhance the efficiency of biological and industrial processes?	[BTL5]

Part B

Short essay-type questions: Answer any four questions. Weightage 3 for each question. (4x3 = 12 Weightage)

8.	Define the enzyme-substrate complex and comment on its formation.	[BTL1]
9.	Compare the induced fit and lock-and-key models of enzyme action.	[BTL2]
	Apply enzyme kinetics principles to design an experiment to determine Km and Vmax.	[BTL3]
11.	Demonstrate how co-enzymes and co-factors contribute to the efficiency and	[BTL3]

regulation of enzymatic reactions in biological systems.

12. Analyze the Urea cycle and its importance in Nitrogen metabolism.

[BTL4]

- (a) Explain the biochemical steps involved in the Urea cycle.
- (b) Analyze the role of key enzymes in the detoxification of ammonia.

13. Assess the impact of enzyme inhibition on metabolic pathways.

[BTL4]

- (a) Compare competitive, non-competitive, and uncompetitive inhibition mechanisms.
- (b) Analyze the role of enzyme inhibitors in regulating key metabolic enzymes.
- 14. Evaluate the effectiveness of Mass Spectrometry (MS) techniques in metabolome [BTL5] analysis, focusing on their sensitivity, specificity, and limitations in untargeted metabolomics.

Part C

Essay-type questions: Answer any two questions. Weightage 5 for each question. (2x5 = 10 Weightage)

15. Give a detailed account of enzyme machinery and the process of Electron Transport Chain. Give a brief account of chemiosmosis.

[BTL1]

- 16. Discuss the regulation of beta-oxidation and fatty acid biosynthesis under fasting and fed conditions, highlighting the hormonal control mechanisms.
- 17. Use the concepts of transamination and deamination to show how amino acids can [BTL3] be converted into metabolic intermediates.
- 18. Assess the interdependence of nucleotide metabolism with other metabolic pathways. [BTL4]
 - (a) Analyze the role of folate and other co-factors in nucleotide biosynthesis.
 - (b) Discuss the significance of ribonucleotide reductase in DNA synthesis.
 - (c) Evaluate the impact of nucleotide imbalances on DNA replication and repair.
