OP Code: P25B008 Reg. No Name ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20 II SEMESTER (CBCSS - PG) DEGREE EXAMINATION, March 2025 M Sc Mathematics MTH2C06: ALGEBRA II 2024 Admission Onwards **Time: 3 Hours** Maximum Weightage: 30 Part A Answer all questions. Weightage 1 for each question. (8x1 = 8 Weightage)1. If R is a ring with unity, and N is an ideal of R containing a unit, then show [BTL1] that N = R. 2. Is π^2 algebraic over $\mathbb{Q}(\pi)$? Why? [BTL3] 3. Find $irr(\sqrt{3-\sqrt{6}},\mathbb{Q})$ and degree of the polynomial. [BTL3] [BTL2] 4. Find conjugates of $3 + \sqrt{2}$ over \mathbb{O} . 5. Let E be a finite extension of degree n over a finite field F. If F has q elements, [BTL1] then prove that E has q^n elements. 6. Find the number of primitive 18^{th} roots of unity in GF(19). [BTL3] [BTL3] 7. Is regular 60-gon constructible? Justify 8. Find $\phi(1000)$. [BTL3] Part B Answer any two questions from each module. Weightage 2 for each question. (6x2 = 12 Weightage)Unit-I 9. Let E be an extension field of F, and let $\alpha \in E$, where α is algebraic over F. [BTL2] Then show that there is an irreducible polynomial $p(x) \in F[x]$ such that $p(\alpha)=0$ and if $f(\alpha) = 0$ for $f(x) \in F[x]$, with $f(x) \neq 0$, then p(x) divides f(x). 10. Find degree and basis of $\mathbb{Q}(2^{\frac{1}{3}},\sqrt{3})$ over \mathbb{Q} [BTL5] 11. Show that the field F of constructible real numbers consists precisely of all real [BTL2]

numbers that we can obtain from \mathbb{Q} by taking square roots of positive numbers

a finite number of times and applying a finite number of field operations.

Unit-II

- 12. If F is a field of prime characteristic p, then prove that $(\alpha + \beta)^{p^n} = \alpha^{p^n} + \beta^{p^n}$ [BTL1] for all $\alpha, \beta \in F$ and all positive integers n.
- 13. Let F be a finite field of characteristic p. Prove that the map $\sigma_p: F \to F$ defined by $\sigma_p(a) = a^p$ for $a \in F$ is an automorphism of F and $F_{\{\sigma_p\}} \cong \mathbb{Z}_p$.
- 14. If E is a finite extension of F, then prove that E is separable over F if and only if each $\alpha \in E$ is separable over F.

Unit-III

- 15. Let K be a finite normal extension of a field F, with Galois group G(K/F). [BTL2] For a field E, where $F \leq E \leq K$, let $\lambda(E)$ be the subgroup of G(K/F) leaving E fixed. Prove that $[K:E] = |\lambda(E)|$ and $[E:F] = (G(K/F):\lambda(E))$, the number of left cosets of $\lambda(E)$ in G(K/F).
- 16. Prove that the Galois group of the n^{th} cyclotomic extension of \mathbb{Q} has $\phi(n)$ elements .
- 17. Show that the polynomial $x^5 1$ is solvable by radicals over \mathbb{Q} . [BTL3]

Part C

Answer any two questions. Weightage 5 for each question. (2x5 = 10 Weightage)

- 18. State and prove Kronecker's Theorem. [BTL1]
- 19. State and prove conjugation isomorphism theorem. [BTL1]
- 20. Show that every finite field is perfect. [BTL3]
- 21. Let K be a finite normal extension of a field F, with Galois group G(K/F). [BTL2] For a field E, where $F \leq E \leq K$, let $\lambda(E)$ be the subgroup of G(K/F) leaving E fixed.
 - (a) Prove that E is a normal extension of F if and only if $\lambda(E)$ is a normal subgroup of G(K/F).
 - (b) Prove that when $\lambda(E)$ is a normal subgroup of G(K/F), then $G(E/F) \cong G(K/F)/G(K/E)$.
