QP Code: P25B033		Reg. No	:	•••••
		Name	:	•••••
	ST MARY'S COLLEGE (AUTONOMO	OUS), TH	RISSUR-2	0
	II SEMESTER (CBCSS-PG) DEGREE EXAMI M Sc Mathematics MTH2C09 : ODE AND CALCULUS O			5
2024 Admission Onwards Fime: 3 Hours Maximum Weightage: 30				
Time: 3	Hours		Maximum	Weightage: 30
	Part A			
Answer all questions. Weightage 1 for each question. $(8x1 = 8 \text{ Weightage})$				
1.	Give confluent hypergeometric equation.			[BTL1]
2.	Show that $sinx = x [\lim_{a o \infty} F(a, a, rac{3}{2}, rac{-x^2}{4a^2})].$			[BTL3]
3.	Locate and classify the singular points of the different $x^3(x-1)y''-2(x-1)y'+3xy=0$.	ntial equatio	n	[BTL2]
4.	Explain the types of critical points of non linear syste	em.		[BTL1]
5.	Prove that $\Gamma(p+1)=p!$.			[BTL2]
6.	Prove that $rac{d}{dx}J_0(x)=-J_1(x).$			[BTL1]
7.	Define Lipschitz condition and also state Peano's the	orem.		[BTL1]
8.	What is an admissible function?			[BTL1]
Part B Answer any two questions from each module. Weightage 2 for each question. $(6x2 = 12 \text{ Weightage})$				
Unit-I				
9.	Express $sin^{-1}x$ in the form of a power series by solv $y'=(1-x^2)^{-1/2}, y(0)=0$ in two ways.	ving the equ	ation	[BTL1]

10. Transform the Chebyshev's equation $(1-x^2)y''-xy'+p^2y=0$, where p is a

non- negative constant into a hypergeometric equation and find the general

11. Determine the nature of the point $x=\infty$ for Bessel's equation $x^2y''+xy'+(x^2-p^2)y=0$

solution near x = 1.

[BTL3]

[BTL4]

Unit-II

- 12. Show that (0,0) is an asymptotically stable critical point for the system $\frac{dx}{dt} = -3x^3 y$, $\frac{dy}{dt} = x^5 2y^3$.
- 13. If the two solutions $x=x_1(t), y=y_1(t)$ and $x=x_2(t), y=y_2(t)$ of the homogeneous system $\frac{dx}{dt}=a_1(t)x+b_1(t)y, \frac{dy}{dt}=a_2(t)x+b_2(t)y$ are linearly independent on [a,b] and if $x=x_p(t), y=y_p(t)$ is any particular solution of non-homogeneous system $\frac{dx}{dt}=a_1(t)x+b_1(t)y+f_1(t), \frac{dy}{dt}=a_2(t)x+b_2(t)y+f_2(t)$ on this interval then prove that $x=c_1x_1(t)+c_2x_2(t)+x_p(t), y=c_1y_1(t)+c_2y_2(t)+y_p(t)$ is the general solution of the non-homogeneous system on [a,b].
- 14. Prove that $J_p(x) = rac{x}{2p}[J_{p-1}(x) + J_{p+1}(x)]$. Then find $J_{-3/2}(x)$ and $J_{-5/2}(x)$. [BTL3]
- 15. Describe Picard's method of successive approximation for solving the initial value [BTL3] problem $y' = f(x, y), y(x_0) = y_0$.
- 16. State and prove Sturm seperation theorem. [BTL4]
- 17. Let q(x) be a positive continuous function that satisfies $0 < m^2 < q(x) < M^2$ on [a,b]. If y(x) is a nontrivial solution of y'' + q(x)y = 0 on [a,b] and if x_1 and x_2 are successive zeros of y(x) then prove that $\frac{\pi}{M} < x_2 x_1 < \frac{\pi}{m}$. Further more if y(x) vanishes at a and b and at n-1 points in (a,b) then prove that $\frac{m(b-a)}{\pi} < n < \frac{M(b-a)}{\pi}$.

Part C

Answer any two questions. Weightage 5 for each question. (2x5 = 10 Weightage)

[BTL2]

- 18. a) Find the indical equation and its roots of the differential equation $4x^2y'' + (2x^4 5x)y' + (3x^2 + 2)y = 0$.
 - b) Find two independent Frobenius series solution of the equation $xy'' y' + 4x^3y = 0$.
- 19. a) Derive Rodrigue's formula for Legendre polynomials; $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n.$ [BTL4]
 - b) Show that $\int_{-1}^1 P_m(x) P_n(x) dx = \left\{egin{array}{ll} 0 & ext{if} & m
 eq n \ rac{2}{2n+1} & ext{if} & m = n \end{array}
 ight\}.$
- 20. a) Find the general solution of the system, $\frac{dx}{dt} = 3x 4y$, $\frac{dy}{dt} = x y$. [BTL4]
 - b) Find the critical points, differential equation of the paths of the system and solve this equation to find the paths, $\frac{dx}{dt} = y(x^2 + 1), \frac{dy}{dt} = 2xy^2$.
- 21. Prove Picard's theorem. [BTL5]
