QP Code: P25B036 Reg. No Name ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20 II SEMESTER (CBCSS-PG) DEGREE EXAMINATION, MARCH 2025 M Sc Mathematics MTH2C10: OPERATIONS RESEARCH 2024 Admission Onwards **Time: 3 Hours** Maximum Weightage: 30 Part A Answer all questions. Weightage 1 for each question. (8x1 = 8 Weightage)1. Let $f(X) = x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 6x_1x_3 - 5x_2x_3$. Write f(X) in [BTL2] quadratic form. 2. Write the following linear programming problem in standard form [BTL3] $\text{Minimize} \quad f = x_1 + x_2 - x_3$ Subject to $x_1 + x_2 \geq 2$ $x_1-x_3 \leq 4$ $2x_1 - x_2 + x_3 \ge 1$ $x_1, x_2, x_3 > 0$ 3. Prove that the set S_F of feasible solutions if not empty, is a closed convex set [BTL5] bounded from below and has atleast one vertex. [BTL1] 4. Describe a transportation problem.

5. Describe a connected graph and a strongly connected graph. [BTL1]

6. What do we do in sensitivity analysis in linear programming problem? [BTL4]

7. Explain an integer vector, then describe an integer linear programming problem. [BTL1]

8. Examine the given pay off matrix for saddle point

 $\left[egin{array}{cccccc} 4 & -2 & -4 & -1 \ 3 & 1 & -1 & 2 \ 2 & 3 & -2 & -2 \ -1 & -3 & -3 & 1 \ 3 & 2 & 2 & 3 \end{array}
ight]$

Part B

Answer any two questions from each module. Weightage 2 for each question.

(6x2 = 12 Weightage)

Unit-I

9. Write an algorithm that constitutes one iteration leading from one basic feasible solution to another in simplex method. [BTL3]

[BTL5]

[BTL5] 10. Using graphical method, solve the following linear programming problem Maximize $f(X) = 3x_1 + 5x_2$ $x_1 + 2x_2 \le 20$ Subject to $x_1 + x_2 \le 15$ $x_2 < 6$

11. Prove that a vertex of S_F is a basic feasible solution.

 $x_1,x_2\geq 0$

[BTL1]

Unit-II

12. i) Define the dual of a linear programming problem.

[BTL3]

ii) Write the dual of the linear programming problem.

$$f(X) = 2x_1 + x_2 - x_3$$
 Subject to $2x_1 - 5x_2 + 3x_3 \leq 4$ $3x_1 + 6x_2 - x_3 \geq 2$ $x_1 + x_2 + x_3 = 4$ $x_1, x_3 \geq 0, x_2$ unrestricted

13. Prove the following statement:

[BTL4]

If the primal problem is feasible, then it has an unbounded optimum, if and only if the dual has no feasible solution and vice versa.

14. Describe a Caterer problem with an example.

[BTL1]

Unit-III

15. Characterize the optimal solution of the integer linear programming problem

[BTL5]

f(X) = CXMinimize Subject to $X \in T_F$

16. i) Define a zero sum game

[BTL3]

ii) Let f(X,Y) be such that both $\max_X \min_Y f(X,Y)$ and

$$\min_{Y} \max_{X} f(X,Y)$$
 exist. Then prove that $\max_{X} \min_{Y} f(X,Y) \leq \min_{Y} \max_{X} f(X,Y)$

17. Write an algorithm to find a minimum spanning tree.

[BTL2]

Part C

Answer any two questions. Weightage 5 for each question. (2x5 = 10 Weightage)

18. Solve the following linear programming problem

[BTL4]

$$f(X) = 4x_1 + 5x_2$$
 Subject to $2x_1 + x_2 \le 6$ $x_1 + 2x_2 \le 5$ $x_1 + x_2 \ge 1$ $x_1 + 4x_2 \ge 2$ $x_1, x_2 \ge 0$

- 19. Prove that the necessary and sufficient condition for a set of column vectors $P_{i,j}$ in the matric \bar{T} to be linearly independent is that the corresponding variables x_{ij} in the transportation array occupy cells a subset of which constitutes a loop.
- 20. Solve the transportation problem for minimum cost with the cost coefficients, demands and supplies as given in the following table

	D ₁	D ₂	D ₃	D ₄	a _i
O ₁	3	2	5	4	25
O ₂	4	1	7	6	35
O ₃	7	8	3	5	30
bj	10	18	20	42	

21. Let f(X,Y) be such that both $\max_X \min_Y f(X,Y)$ and $\min_Y \max_X f(X,Y)$ exist. [BTL3] Then show that the necessary and sufficient condition for the existence of a saddle point (X_0,Y_0) of f(X,Y) is that

$$f(X_0,Y_0) = \max_X \min_Y f(X,Y) = \min_Y \max_X f(X,Y)$$
