QP Code: P25B026	Reg. No	:	•••••
	Name	:	

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

II SEMESTER CBCSS-PG) DEGREE EXAMINATION, MARCH 2025 **M Sc Mathematics**

MTH2C08: TOPOLOGY **2024 Admission Onwards**

Time: 3 Hours Maximum Weightage: 30

Part A

	Answer all questions. Weightage 1 for each question. $(8x1 = 8 \text{ Weightage})$	
1.	Consider $\mathbb R$ as a metric space. Give an example of a metric on $\mathbb R$ other than usual metric.	[BTL3]
2.	What is Sierpinski space? Is this space obtainable from a metric or even a pseudo metric? Justify your answer.	[BTL1]
3.	Prove that the class of all open intervals with rational end points form a base for usual topology on \mathbb{R} .	[BTL3]
4.	Consider the Discrete topology on the set $X = \{1, 2, 3, 4, 5\}$. Find a subbase for this topology.	[BTL3]
5.	Define connectedness and path connectedness.	[BTL1]
6.	Define a compact space and prove that a cofinite topological space is compact.	[BTL1]
7.	Prove that in a T_2 space the limits of sequences are unique	[BTL1]

Part B

8. Prove that there exist no countable connected T_3 space

Answer any two questions from each module. Weightage 2 for each question. (6x2 = 12 Weightage)

Unit-I

- 9. Let X be a non empty set and the collection $\{\mathbb{T}_i : i \in I\}$ be an indexed family of [BTL2] topologies on X. Let $\mathbb{T} = \bigcap_{i=1}^n \mathbb{T}_i$. Then prove that \mathbb{T} is a topology and it is weaker than each \mathbb{T}_i .
- 10. Define accumulation point of a subset A of a topological space X and deduce that [BTL3]the set of all integers has no accumulation point.
- [BTL4] 11. a) Define boundary of a set A. Find the boundary of the compliment of A. b) Prove that a set A is clopen in a topological space if and only if it has an empty boundary.

[BTL3]

Unit-II

12. Prove that compactness is an absolute property.	[BTL2]			
13. Give an example of a countable space which is not second countable.	[BTL4]			
14. Let $\mathbb C$ be a collection of connected subsets of a space X such that no two members of $\mathbb C$, are mutually separated. Then show that $\cup_{E\in\mathbb C} E$ is connected. Unit-III				
15. Suppose y is an accumulation point of a subset A of a T_1 space X . Then deduce that every neighbourhood of y contains infinitely many points of A .	[BTL3]			
16. Prove that every Tychonoff space is T_3 .	[BTL2]			
17. (a) Prove that every regular Lindeloff space is normal. (b) Prove that every compact Hausdorff space is T_4 .	[BTL4]			
Part C				
Answer any two questions. Weightage 5 for each question. $(2x5 = 10 \text{ Weightage})$				
 18. a) If a space is second countable, prove that every open cover of it has a countable subcover. b) For a topological space (X, T), let S be a family of subsets of X. Then prove that S is a subbase for T if and only if S generates T. 	[BTL3]			
19. Prove that every continuous real valued function on a compact space is bounded and attains its extrema.	[BTL4]			
20. State and prove Lebesque Covering Lemma.	[BTL4]			
21. State and prove Uryshon Lemma.	[BTL2]			
