QP C	ode: P25B003	Reg. No	:	•••••
		Name	•	•••••
	ST MARY'S COLLEGE (AUTONOMO II SEMESTER (CBCSS-PG) DEGREE EXAM M Sc Chemistry	, ,		
	CHE2C05 : GROUP THEORY AND CHE 2024 Admission Onwai (Credits: 3)		ONDING	
Time: 3	· · · · · · · · · · · · · · · · · · ·		Maximum Weig	ghtage: 30
	Section A			
	Answer any eight questions. Weightage 1 for each of	question. (8x1	= 8 Weightage)	
1.	Find schoenflies symbol of point group for i) CH_2Cl_2 ii) Allene			[BTL1]
2.	Classify the following molecules into Abelian and N i) H ₂ O ii) NH		roups	[BTL4]
3.	Show that $\sigma_{xy} \times \sigma_{xz} = C_2(x)$.			[BTL2]
4.	Define representation of point groups using translate H_2O as an example.	ional vector a	s basis taking	[BTL1]
5.	Can wave functions be used as bases for irreducible	representation	ons? Explain.	[BTL1]
6.	Construct the character table for C_{2h} point group.			[BTL3]
7.	What is Laporte selection rule for centrosymmetric	molecules.		[BTL1]
8.	You are given $\int_{-a}^{+a} x^3 dx$. Predict whether it is a vanish	shing integral	or not. Justify.	[BTL5]
9.	Draw the MO energy level diagram of HCHO mole symmetry of atomic orbitals.	ecule. Also m	ention the	[BTL3]
10	. Illustrate the MO treatment for homonuclear diatom	nic molecule-	Be ₂ .	[BTL2]
	Section B Answer any six questions. Weightage 2 for each qu	estion. (6x2 =	= 12 Weightage)	
11	. Show that the four symmetry operations E, $C_2(z)$, σ mathematical group under multiplication.	h (xy) and i f	orms a	[BTL1]
12	. Identify the schoenflies symbol for the point group in each of the following cases	to which the 1	nolecules belong	[BTL2]
	$ \begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & $	iii)	N	

Turn Over

- 13. Ethylene belongs to D_{2h} (E, C_2 (x), C_2 (y), C_2 (z), σ_{xy} , σ_{xz} , σ_{yz} and i). Taking the [BTL4] positional coordinates of all atoms generate a reducible representation.
- 14. Derive reduction formula using GOT.

[BTL5]

15. Find IR and Raman active vibrations of NH_3 . Use C_{3v} character table

[BTL1]

		2C3			
A1	1	1	1	Z	$x^2 + y^2$, z^2
A ₂	1	1	-1	Rz	ADDRESS SERVICES SERVICES
Ε	2	-1	0	(x, y), (Rx, Ry)	$x^2 + y^2$, z^2 ($x^2 - y^2$, xy), (xz , yz)

16. Explain the terms SALC and projection operator.

[BTL1]

17. Determine the spectroscopic term symbol for

[BTL3]

- i) H₂
- ii) O_2^+ iii) O_2^- iv) C_2 v) O_2

- 18. Use 2s and 2p_z orbitals to construct

[BTL3]

- i) Two equivalent sp hybrid orbitals
- ii) Three equivalent sp² orbitals

Section C

Answer any two questions. Weightage 5 for each question. (2x5 = 10 Weightage)

- 19. Explain Great Orthogonality Theorem. What are the consequences of the theorem? [BTL2] Use the theorem to derive C_{4v} character table.
- 20. Make use of the Td character table and find the hybridized orbitals of CH₄ Table 1: Character table for T_d point group

[BTL3]

Table 1. Character table for T_d point group							
T_d	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$		
			1				$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	1	(x, y, z)	(xz, yz, xy)

21. Discuss the MO theory of bonding as applied to H₂ molecule.

[BTL5]

22. Analyse the HMO for butadiene and find out free valence of carbon atoms

[BTL4]

$$\Phi_1 = 0.372 \, \mathrm{p}_1 + 0.602 \, \mathrm{p}_2 + 0.602 \, \mathrm{p}_3 + 0.372 \, \mathrm{p}_4$$

$$\Phi_2 = 0.602p_1 + 0.372 p_2 - 0.372 p_3 - 0.602p_4$$

$$\Phi_3 = 0.602p_1 - 0.372p_2 - 0.372p_3 + 0.602p_4$$

$$\Phi_4 = 0.372p_1 - 0.602p2 + 0.602p3 - 0.302p4$$
