QP C	ode: U25B053	Reg. No	•	••••••
		Name	•	••••••
	ST MARY'S COLLEGE (AUTONOM	IOUS), TH	RISSUR-20	
	II SEMESTER (FYUGP) DEGREE EXAM BCA	INATION, M	ARCH 2025	
F	BCA2CJ103 : NUMERICAL ANALYSIS AND OF 2024 Admission Onwa (Credits: 4)		ON TECHNIQUI	ES
Time: 2			Maximum 1	Marks: 70
	Section A			
	Answer all . Each question carries 3 Marks	(Ceiling: 2	4 Marks)	
1.	Construct the dual of: Maximize $z=2000x_1+3000x_2$ Subject to $6x_1+9x_2\leq 100$ $2x_1+x_2\leq 20$ $x_1,x_2\geq 0$.			[BTL2]
2.	Discuss any three numerical techniques for solving	definite integ	rals?	[BTL2]
3.	State the general linear programming problem in st	andard form.		[BTL3]
4.	Define mathematical formulation of Transportation	Problem.		[BTL1]
5.	Find second approximation of $x^3 - 5x + 3 = 0$, r	near x=2?		[BTL4]
6.	Discuss Simpson's 3/8 formula and explain each te	rm.		[BTL2]
7.	Solve graphically the following LPP: Maximize $Z=4x+y$ subject to :- $x+y\leq 5, 3x+y\leq 9$ and $x,y\geq 0$) .		[BTL3]
8.	Express the implementation technique of least cost problem.	cell method is	n transportation	[BTL1]
9.	Find the difference $\sqrt{6.37} - \sqrt{6.36}$ to three signif	icant figures.		[BTL4]
10	. Find the initial solution to the following transporta	tion problem ı	using Northwest	[BTL4]

D1D2D3D4SupplyF1F2F3Demand

Corner rule:

Turn Over

Section B

Answer **all**. Each question carries **6** Marks (Ceiling: 36 Marks)

11. Find a root of the equation $f(x) = 3x - \sqrt{1 + \sin x}$ by using bisection method? [BTL3]

12. Using Simpson's $(1/3)^{rd}$ Rule, Find $\int_1^5 x^2 dx$ given h = 1. [BTL2]

13. Define artificial variables? Distinguish between slack and surplus variables. [BTL3]

[BTL3] 14. Perform four iterations of the Newton-Raphson method to find the smallest positive root of the equation $f(x) = x^3 + x^2 - 1$.

15. Solve the following transportation problem :

[BTL2] D2

D3D1D4Supply2 2 2 Q11 3 Q210 8 5 4 7 Q36 6 5 8 Demand4 3 4 4 15

[BTL4] 16. Compare Newton's forward and backward interpolation with difference table.

17. Suppose a furniture company makes chairs and tables only. Each chair gives a [BTL1] profit of Rs.20 whereas each table gives Rs. 30. Both products are processed by three machines M1, M2 and M3. Each chair requires 3 hrs, 5 hrs and 2 hrs on M1, M2 and M3 respectively, whereas the corresponding figures for each table are 3, 2 and 6. The machine M1 can work for 36 hrs per week, whereas M2 and M3 can work for 50 hrs and 60 hrs. Formulate the problem into a LPP in order to maximize the total profit?

18. Solve the following assignment problem:

[BTL3]

ABCDP17 10 6 8 Q18 8 149 R14 121210 S15 9 7 11

Section C

Answer any one. Each question carries 10 Marks (1x10=10 Marks)

19. Explain Lagrange interpolation. Find f (11) using Lagrange's interpolation formula [BTL2] for the following table:

X:10 5 7 12Y:10 12 15 18

[BTL4] 20. Solve the following linear programming problem using simplex method: Maximize $Z = 9x_1 + 2x_2 + 5x_3$

Subject to $2x_1 + 3x_2 - 5x_3 \le 12$

$$2x_1 - x_2 + 3x_3 \le 3$$

$$3x_1 + x_2 - 2x_3 \le 2$$

$$x_1, x_2, x_3 \ge 0$$
