Name :

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

II SEMESTER (FYUGP) DEGREE EXAMINATION, MARCH 2025 B Sc Chemistry

CHE2CJ101: PHYSICAL CHEMISTRY I: STATES OF MATTER 2024 Admission Onwards

(Credits: 4)

Time: 2 Hours Maximum Marks: 70

Section A

Answer all. Each question carries 3 Marks (Ceiling: 24 Marks)

	Answer all. Each question carries 3 Marks (Celling: 24 Marks)	
1.	Give the significance of van der Waals constants.	[BTL1]
2.	At what temperature will the RMS velocity of O_2 gas be equal to that of H_2 molecules at 300 K?	[BTL1]
3.	With help of an example explain superhydrophobic surfaces.	[BTL3]
4.	Give the Poiseuille equation and mention the terms involved in it.	[BTL2]
5.	Calculate the number of atoms in a body centred cubic unit cell of a metallic crystal.	[BTL3]
6.	State and explain Bragg's equation.	[BTL2]
7.	What is electron diffraction by crystals?	[BTL3]
8.	TiO ₂ has an extremely high melting and boiling point justify.	[BTL2]
9.	What are aerosols?	[BTL1]
10	. What are interstitial solid solutions ?	[BTL1]
	Section B Answer all. Each question carries 6 Marks (Ceiling: 36 Marks)	

- 11. Find the critical constants for HCl gas, $a = 0.367 \text{ Nm}^4 \text{mol}^{-2}$ and $b = 4.08 \times 10^{-5}$ [BTL2] $\text{m}^3 \text{mol}^{-1}$.
- 12. Give Maxwell's equation for the distribution of molecular velocities. Also explain [BTL1] graphically the effect of temperature on this distribution.
- 13. Derive van der Waals equation in virial form and deduce Boyle Temperature from [BTL2] this equation.

14. Explain dipole-dipole and dipole-induced dipole interactions.	[BTL5]
15. Discuss the various types of molecular interactions.	[BTL3]
16. Discuss atomic and molecular solids.	[BTL4]
17. Suggest a law describing solubility of gases in liquids with its applications.	[BTL5]
18. What are colligative properties? Mention any two.	[BTL3]

Section C

Answer any one. Each question carries 10 Marks (1x10=10 Marks)

19. Derive the van der Waals equation for a real gas.

[BTL4]

20. Define the term Ebullioscopic constant? What is the relationship between freezing [BTL3] point depression and molar mass determination for solutes?
