Name :

ST MARY'S COLLEGE (AUTONOMOUS), THRISSUR-20

II SEMESTER (FYUGP) DEGREE EXAMINATION, MARCH 2025 B.A/B.Sc/B Com/BSW

PHY2MN102: MODERN PHYSICS AND NUCLEAR PHYSICS

2024 Admission Onwards

(Credits: 4)

Time: 2 Hours Maximum Marks: 70

Section A

Answer all. Each question carries 3 Marks (Ceiling: 24 Marks)

1. Describe the electromagnetic spectrum.	[BTL1]
2. Distinguish between pair production and pair annihilation.	[BTL1]
3. Find the velocity of the electron in a stable orbit.	[BTL2]
4. What factors influence the characteristic of spectral lines?	[BTL2]
5. How does Bohr's quantization of electron orbits ensure atomic stability?	[BTL3]
6. Which nucleus is more stable, ${}_{5}B^{11}$ or ${}_{6}C^{11}$? Why?	[BTL3]
7. What is the stability curve? How does the neutron-to-proton ratio change with increasing mass number?	[BTL3]
8. What is the significance of electric quadrupole moments in nuclear physics?	[BTL4]
9. Describe how neutrinos interact with matter.	[BTL4]
10. Explain how supernova explosions contribute to the formation of elements and the universe.	[BTL5]
Section B	
Answer all. Each question carries 6 Marks (Ceiling: 36 Marks)	
11. What is the significance of Planck's quantum hypothesis in resolving the ultraviolet catastrophe?	[BTL1]
12. Explain the photoelectric effect and its experimental study.	[BTL1]
13. Name the different spectral series of hydrogen and specify their corresponding wavelength regions.	[BTL2]

- 14. How magic numbers arise in nuclei based on the shell model? [BTL3]
- 15. How is radiocarbon dating used to determine the age of ancient artifacts and what [BTL3] are its limitations?
- 16. How do stars synthesize elements heavier than helium and what limits this process?
- 17. Find the longest wavelength present in the Balmer series of hydrogen, corresponding to the H_{α} line. Given $R=1.097\times10^7$ m⁻¹.
- 18. The binding energy of the neon isotope $_{10}\mathrm{Ne}^{20}$ is 160.647 MeV. Find its atomic mass. Given $m_p = 1.00759$ u, $m_n = 1.008$ u.

Section C

Answer any one. Each question carries 10 Marks (1x10=10 Marks)

- 19. Discuss how Rutherford scattering experiment led to the concept of the distance of [BTL3] closest approach.
- 20. Discuss the liquid drop model of the atomic nucleus and how it accounts for nuclear binding energy. [BTL4]
