QP C	ode: U25B026	Reg. No Name	: :	•••••••
	ST MARY'S COLLEGE (AUTONOMO	OUS), TH	RISSU	R-20
	II SEMESTER (FYUGP) DEGREE EXAMIN B.A/B.Sc./B.Com/BSV MAT2MN103 : ANALYSIS AND SOME COV 2024 Admission Onwar (Credits: 4)	V UNTING PI		
Time: 2	` '		N	1aximum Marks: 70
	Section A Answer all. Each question carries 3 Marks	(Ceiling: 2	4 Marks)
1.	Write the first five terms of the recursively defined s $a_{k+1}=2(a_k-1)$	equence a_1	=3,	[BTL4]
2.	Determine the convergence or divergence of the seri	es $\sum_{n=1}^{\infty} \frac{1}{n^{1.0}}$	001	[BTL2]
3.	Define a Monotone Sequence and give an example.			[BTL1]
4.	Evaluate i^{12} .			[BTL3]
5.	Express $z = \sqrt{3} - i$ in polar form.			[BTL4]
6.	Define a region in the complex plane.			[BTL1]
7.	Find the derivative of $f(z) = -5iz^2 + \frac{2+i}{z^2}$.			[BTL5]
8.	Show that the Cauchy- Riemann equations are satisf $f(z)=3z^2+5z-6i$ at every point.	ied for the fu	inction	[BTL3]
9.	Compute each of the following i) 6p_5 ii) 7C_7			[BTL3]
10	. Define the frequency of occurence of an event.			[BTL2]
	Section B Answer all. Each question carries 6 Marks	(Ceiling:	36 Mark	(s)

11. Show that the sequence $\{C_n\} = \{(-1)^n \frac{1}{n!}\}$ converges and find its limit. [BTL4] 12. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1}{3n^2-4n+5}$ [BTL2]

- 13. i) Find the modulus of the complex number $z=i(2-i)-4(1+\frac{1}{4}i)$ [BTL4]
 - ii) Let z=x+iy . Express $|z+5\bar{z}|$ in terms of x and y
- 14. Write the complex numbers $(cos\frac{\pi}{9} + isin\frac{\pi}{9})^{12}$, $[2(cos\frac{\pi}{6} + isin\frac{\pi}{6})]^5$ in polar [BTL3] form and in a+ib form.
- 15. Find the real and imaginary parts of the functions [BTL2]
 - i) $f(z)=z^2-(2+i)z$
 - ii) q(z) = z + 2Re(z)
- 16. Verify that the function $u(x,y) = x^3 3xy^2$ is harmonic in the appropriate domain D. [BTL4]
- 17. i) A bank password consists of two letters of the English alphabet followed by two bdigits. How many different passwords are there?
 - ii) A catered menu is to include a soup, a main course, a dessert, and a beverage. Suppose that a customer can select from four soups, five main courses, three desserts and two beverages. How many different menus can be selected?
- 18. i) State the Extended Pigeonhole Principle. [BTL5]
 - ii) Show that if seven colors are used to paint 50 bicycles, at least 8 bicycles will be the same color.

Section C

Answer any one. Each question carries 10 Marks (1x10=10 Marks)

- 19. a) Simplify the ratio of factorial $\frac{(n+1)!}{(n-1)!}$ [BTL5]
 - b) Find the sequence of partial sums S_1, S_2, S_3, S_4 and S_5 of the series $\sum_{n=1}^{\infty} \frac{3}{2^{n-1}}$
 - c) Apply integral test to the series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$
- 20. i) Sketch the graph of the equation |z + 2 + 2i| = 2 in the complex plane. [BTL3]
 - ii) Find the fourth roots of z = 1 + i
