Sanket A. Tikare, M. S. Chaudhary

By using this we can construct a sequence $\{g_n\}$ of simple functions such that $\int_a^b ||f - g_n|| d\alpha < \frac{1}{n}$ and $||g_n|| \le ||f|| + \frac{1}{n}$ for every $n \ge 1$.

Also, since $\lim_{n \to \infty} \int_a^b ||f - g_n|| d\alpha = 0$, we can choose a subsequence $\{g_{n_k}\}$ such that $g_{n_k} \to f$.

Now, g_{n_k} are integrable and $||g_{n_k}|| \le ||f|| + \frac{1}{n_k}$ by dominated convergence theorem, f is Henstock-Stieltjes integrable with respect to α .

On the contrary, suppose f is Henstock-Stieltjes integrable with respect to α . Then f is measurable and hence ||f|| is Lebesgue-Stieltjes integrable with respect to α . Consequently, f is Bochner-Stieltjes integrable with respect to α . \Box

Acknowledgement

The first author acknowledges University Grant Commission, New Delhi for financial support under the scheme "RFSMS".

REFERENCES

- R. G. Bartle, A modern theory of integration, Graduate studies in mathematics, Vol.32, American Mathematical Society, Providence, 2001.
- [2] S. S. Cao, *The Henstock integral for Banach-valued functions*, Southeast Asian Bull. Math. 16, No. 1,(1992) pp-35-40.
- [3] J. S. Lim, J. H. Yoon and G. S. Eun, On Henstock-Stieltjes integral, Kangweon-Kyungki Math. J. 6, No. 1,(1998) pp-87-96.
- [4] S. Schwabik, Y. Guoju, *Topics in Banach Space Integration*, World Scientific Pub., 2005.
- [5] C. Swartz, Introduction to Gauge integrals, World Scientific Publishers, Singapore, 2001.

Bulletin of Kerala Mathematics Association Vol.6, No.2, (2010, December) 93–101

FUZZY BOUNDED LINEAR MAPS AND QUOTIENT SPACES

Sr. Magie Jose

Department of Mathematics, St. Mary's college, Thrissur, Kerala, India-680 020

(Received on November 01, 2010)

Abstract. In this paper fuzzy norm on a real or complex vector space is introduced. Fuzzy normed space and fuzzy Banach space are defined. Boundedness of a linear transformation in *F*-normed space (fuzzy normed space) is also diffined i.e., *F*boundedness. The quotient space of an *F*-normed space is defined. It is proved that B(X, X'), the set of all bounded linear transformation from *F*-normed space (X, N, *) to (X', N, *) is a *F*-Banach space if X' is a *F*-Banach space. It is also proved that if X is *F*-Banach then so is the quotient space X/M, where M is a closed linear subspace of X.

1. Introduction

I have defined F-normed space, F-Banach space, Cauchy sequence and convergence of a sequence in F-normed space, F-Banach space F-boundedness of a linear transformation on F-normed space and quotient space of F-normed space. We prove that B(X, X') the set of all bounded linear transformations from the F-normed space (X, N, *) to the F-normed space (X, N, *) is F-normed space under the F-norm $N(T, t) = Inf \{N(T(x), t)/x \in X\}$ and with respect to the pointwise linear operation defined by $(T_1 + T_2)(x) = T_1(x) + T_2(x)$ and $(\alpha T)(x) = \alpha T(x)$. We have proved that if X' is F-Banach space then B(X, X') is also a F-Banach space. We have also proved that if M is a closed linar subspace of an F-normed space (X, N, *), then the quotient space X/M is F-normed space with the F-norm of each coset x + Mdefined as $N(x + M, t) = \sup\{N(x + m, t)/m \in M\}$. If X is F-Banach then X/Mis also F-Banach with the above F-norm.

92

2. Preliminary results

DEFINITION 2.1. [1] A binary operation $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a *t*-norm if it satisfies the following conditions:

1. It is associative and commutative.

- 2. a * 1 = a
- 3. $a * b \le c * d$ whenever $a \le b$ and $b \le d, a, b, c, d \in [0, 1]$.

DEFINITION 2.2. A 3-tuple (X, N, *) is said to be a *F*-normed space if *X* is a real or complex vector space, * is a continuos *t*-norm and *N* is a function on $X \times (0, \infty)$ satisfying the following conditions:

- 1. N(x,t) > 0
- 2. N(x,t) = 1 iff. x = 0
- 3. N(kx,t) = .N(x,t/|k|)
- 4. $N(x,t) * N(y,s) \le N(x+y,t+s)$
- 5. $N(x, .): (0, \infty) \rightarrow [0, 1]$ is continuous. $x, y, z \in X, t, s > 0$

DEFINITION 2.3. A sequence $\{x_n\}$ in a *f*-normed space (X, N, *) is said to be convergent to an element $x \in X$ iff given t > 0, 0 < r < 1, there exists an $n_0 \in J$ (the set of all positive integers) such that $N(x_n - x, t) > 1 - r$, for every $n \ge n_0$.

DEFINITION 2.4. A sequence $\{x_n\}$ in a *f*-normed space (X, N, *) is said to be *F*-Cauchy sequence if and only if for every ϵ such that $0 < \epsilon < 1$, t > 0, there exists $n_0 \in J$ such that

 $N(x_n - x_m, t) > 1 - \epsilon$ for every $n, m \ge n_0$.

Equivalently a sequence $\{x_n\}$ in a *f*-normed space (X, N, *) is said to be *f*-cauchy sequence iff given $0 < \epsilon < 1, t > 0$ there exists $n_0 \in J$ such that $N(x_{n+p} - x_m, t) > 1 - \epsilon$ for every $n \ge n_0, p > 0$.

DEFINITION 2.5. A *F*-normed space (X, N, *) is said to be complete if every *F*-Cauchy sequence in *X* converges in *X*. A complete *f*-normed space is called *F*-banach space.

DEFINITION 2.6. A transformation T from the F-normed space (X, N, *) to the Fnormed space (X', N', *) is said to be continuous at $x \in X$ if given $r_1, t_1 > 0$, $0 < r_1 < 1$, there exists $r_x, t_x > 0, 0 < r_x < 1$ such that

$$N(x - y, t_x) > 1 - r_x \Rightarrow N'(T(x) - T(y), t_1) > 1 - r_1,$$

for every $y \in X$. If T is continuous at each point $x \in X$ then it is said to be continuous on X.

DEFINITION 2.7. A linear transformation T from the F-normed space (X, N, *) to the F-normed space (X'N', *) is said to be f-bounded if there exists an $r, 0 < r < \infty$ such that

 $N'(T(x), t) \ge N(x, t/r)$ for every $x \in X$.

THEOREM 2.8. Let B(X, X') denote the set of all bounded linear transformation from (X, N, *) to (X', N, *). Then under the minimum t-norm B(X, X') is a Fnormed space with respect to the pointwise linear operations defined by $(T_1+T_2)(x) =$ $T_1(x) + T_2(x)$ and $(\alpha T)(x) = \alpha T(x)$ and the norm defined by

 $N(T,t) = \inf\{N(T(x),t)/x \in X\}.$

If X' is a F-Banach space then B(X, X') is also a F-Banach space.

Proof. Let $T_1, T_2 \in B(X, X')$ and α a scalar, then

 $N((T_1 + T_2)(x), t) = N(T_1(x) + T_2(x), t)$ $\geq N(T_1(x), t/2) * N(T_2(x), t/2)$

Since T_1 and T_2 are F-bounded we have an M_1 and M_2 such that $N(T_1(x), t/2) > (x, t/2M_1)$ and $N(T_2(x), t/2) > N(x, t/2M_2)$. If $M_1 < M_2$ we have

$$N((T_1 + T_2)(x), t) \ge N(x, t/2M_1) * N(x, t/2M_2)$$

> $N(x, t/2M_2) * N(x, t/2M_2)$
= $N(x, t/2M_2) \Rightarrow T_1 + T_2$

is F-bounded, since * is a minimum t-norm.

If T is F-bounded, then

$$N(\alpha T)(x), t) = N\alpha(T(x), t)$$

= $N(T(x), t/|\alpha|)$
> $N(x, t/M|\alpha|)$

for every $x \in X$, as T is F-bounded.

 $\Rightarrow \alpha T$ is *F*-bounded.

Therefore B(X, X') is a linear space.

Next we prove that $N(T,t) = \inf \{N(T(x),t) | x \in X\}$ is a *F*-norm. Let

$$\begin{split} N(T,t) &= 1 \\ \Rightarrow & \inf \left\{ N(T(x),t)/x \in X \right\} = 1 \\ \Rightarrow & N(T(x),t) \geq 1 \text{ for every } x \in X \\ \Rightarrow & N(T(x),t) = 1 \text{ as we have } N(T(x),t) \leq 1 \\ \Rightarrow & T(x) = 0 \\ \Rightarrow & T = 0 \end{split}$$

Suppose T = 0,

$$\Rightarrow T(x) = 0 \text{ for every } x \Rightarrow N(T(x),t) = 1 \text{ for every } x \in X \Rightarrow \inf\{N(T(x),t)/x \in X\} = 1 \Rightarrow N(T,t) = 1 N(kT,t) = \inf\{N(kT(x),t/x \in X\} = \inf\{N(T(x),t/|k|)/x \in X\} = N(T,t/|k|) N(T_1 + T_2,t+s) = \inf N((T_1 + T_2)(x),t+s)/x \in X = \inf\{N(T_1(x) + T_2(x),t+s/x \in X\} \ge \inf\{N(T_1(x),t) + N(T_2(x),s)/x \in X\} = \inf\{N(T_1(x),t)/x \in X\} * \inf\{N(T_2(x),s)/x \in X\} = N(T_1,t) * N(T_2,s)$$

This proves that $N(T,t) = \inf\{N(T(x),t)/x \in X\}$ is a *F*-norm on B(X, X'). We assume that X' is a *F*-Banach space and we prove that B(X, X') is a *F*-Banach space.

Let $\{T_n\}$ be a Cauchy sequence in B(X, X'). Given $\epsilon > 0$, there exists an n_0 such that $N(T_n - T_m, t) > 1 - \epsilon$ for every $m, n \ge n_0$. Let $x \in X$

$$\begin{split} N(T_n - T_m, t) &= \inf \{ N(T_n - T_m)(x), t/x \in X \} \\ &\leq N(T_n - T_m)(x), t) \text{ for every } x \in X \\ \text{i.e., } N(T_n - T_m)(x), t) &\geq N(T_n - T_m, t) \text{ for every } x \in X. \\ &> 1 - \epsilon \text{ for every } n, m \geq n_0 \\ &\Rightarrow \{T_n(x)\} \text{ is a Cauchy sequence in } X'. \\ &\Rightarrow \{T_n(x)\} \rightarrow T(x), \text{ as } X' \text{ is complete.} \end{split}$$

```
i.e.,
```

$$\begin{split} \lim_{n \to \infty} \{ N(T_n(x) - T(x)), t) \} &\to 1 \\ N(T(x), t) &= N(T(x) + T_n(x) - T_n(x), t) \\ &\geq N(T_n(x), t/2) * N(T(x) - T_n(x), t/2) \\ &> N(T(x) - T_n(x), t/2) * N(x, t/2M) \end{split}$$

Taking limits on both sides,

N(T(x),t) > 1 * N(T(x),t/2M)= N(x,t/2M) \Rightarrow T is F-bounded $T_n(\alpha x + \beta y) = \alpha T_n(x) + \beta T_n(y).$

Taking limits on both sides we get,

 $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ $\Rightarrow T \text{ is linear. Thus } T \in B(X, X').$

Finally we show that $T_n \to T$. i. e., let t, ϵ be given, since $\{T_n(x)\} \to T(x)$,

 $\{N(T_n(x) - T(x)), t)\} > 1 - \epsilon$ for every $n \ge n_x$

Let $n_0 = \sup\{n_x/x \in X\}$. Therefore,

 $\{N(T_n(x) - T(x)), t)\} > 1 - \epsilon \text{ for all } x \in X, n \ge n_0$ $\Rightarrow \inf\{N(T_n(x) - T(x)), t)\} > 1 - \epsilon \text{ for every } n \ge n_0$

 $N(T_n - T, T) > 1 - \epsilon$ for every $n \ge n_0$

$$\Rightarrow T_n \to T.$$

Thus B(X, X') is a *F*-Banach space. \Box

THEOREM 2.9. Let M be a closed linear subspace of an F-normed space (X, N, *). Then the quotient space X/M is a F-normed space with the F-norm defined by $N(x + M, t) = \sup\{N(x + m, t)/m \in M\}$. If X is a F-Banach space then X/M is also a F-Banach space.

Proof. It can be easily verified that X/M is a linear space under the operations defined by (x + M) + (y + M) = (x + y) + M, $a(x + M) = ax + \in M$, $x, y \in X$ and α is a scalar. Now we prove that X/M is an F-normed space. The first three properties

96

97

Sr. Magie Jose

of the F-norm are trivial. We only verify the fourth property.

$$N(x + y + M, t + s) = \sup\{N(x + y + m, t + s/m \in M\}$$

= sup{N(x + m₁ + y + m₂, t + s)/m₁, m₂ \in M}
= sup{N(x + m₁, t) * N(y + m₂, s)/m₁, m₂ \in M}
= sup{N(x + m₁, t)/m₁ \in M} * sup{N(x + m₂, t)/m₂ \in M}
= N(x + M, t) * N(y + M, s)

The fifth property of the F-norm is trivial.

We call X/M the fuzzy quotient space of X by M. Next new will prove that X/M is F-Banach if X is F-Banach. Let $s_n \in X$, $(s_n + M)$ be a F-cauchy sequence in X/M. We shall extract a convergent subsequence from this Cauchy sequence as follows:

Given $\in = \frac{1}{2}$, $t = \frac{1}{2}$, we can find a positive integer n_1 such that

$$N((s_{n+p} + M) - (s_n + M), \frac{1}{2}) > 1 - \frac{1}{2}, \forall n \ge n_1. \text{ Let } s_{n_1} = x_1$$
(2.1)

Given $\in = \frac{1}{3}$, $t = \frac{1}{3}$ we can find a positive integer $n_2 > n_1$ such that

$$N((s_{n+p}+M) - (s_n+M), \frac{1}{3}) > 1 - \frac{1}{3}, \ \forall n \ge n_2. \ \text{Let} \ s_{n_2} = x_2.$$
(2.2)

Since $n_2 > n_1$, x_1 and x_2 will satisfy

$$N((x_2 + M) - (x_1 + M), \frac{1}{2}) > 1 - \frac{1}{2},$$
(2.3)

Having choosen n_1, n_2, \ldots, n_k and x_1, x_2, \ldots, x_k we find $n_{k+1} > n_k$ such that

$$N((s_{n+p} + M) - (s_n + M), 1/k + 2) > 1 - 1/k + 2\forall n \ge n_{k+1}$$

and let $s_{n_{k+1}} = x_{k+1}$.

Hence we have obtained a subsequence $\{x_k + M\}$ of $\{s_n + M\}$ such that

$$N((x_{k+1} + M) - (x_k + M), 1/k + 1) > 1 - 1/k + 1 \quad \forall k = 1, 2, 3, \dots$$

We shall prove this subsequence converges to an element in X/M. Let $y_1 \in x_1 + M$, then $y_1 = x_1 + m_1, m_1 \in M$. From (2.3) we get

$$N((x_2+M)-(x_1+M),\frac{1}{2}) > 1-\frac{1}{2} \Rightarrow \sup N(\{x_1-x_2+m,\frac{1}{2}/m \in M\} > 1-\frac{1}{2},$$

implies there exists m_0 such that

$$N(x_1 - x_2 + m_0, \frac{1}{2}) > 1 - \frac{1}{2} \Rightarrow N(x_1 + m_1) - (x_2 + m_1 - m_0), \frac{1}{2}) > 1 - \frac{1}{2}.$$

Choose y_2 as $x_2 + m_1 - m_0$.

Therefore,
$$N(y_1 - y_2, \frac{1}{2}) > 1 - \frac{1}{2}$$
.

In a similar way choose $y_3 \in x_3 + M$ such that $N(y_2 - y_3, \frac{1}{3}) > 1 - \frac{1}{3}$. Continuing this manner we obtain a sequence $\{y_n\}$ in X such that

$$N(y_n - y_{n+1}, \frac{1}{n+1}) > 1 - \frac{1}{n+1}.$$

We shall show that $\{y_n\}$ is a *F*-Cauchy sequence in *X*.

$$N(y_{n+q} - y_n, t) = N(y_n - y_{n+1} + y_{n+1} - y_{n+2} + y_{n+2} - \dots + y_{n+q-1} - y_{n+q}, t)$$

$$\geq N(y_n - y_{n+1}, \frac{t}{q}) * N(y_{n+1} - y_{n+2}, \frac{t}{q}) * N(y_{n+2} - y_{n+3}, \frac{t}{q}) * \dots$$

$$\dots * N(y_{n+q+1} - y_{n+q}, \frac{t}{q})$$

choose $\frac{t}{q} > \frac{1}{n+1}$ then

$$N(y_{n+q} - y_n, t) \ge N(y_n - y_{n+1}, \frac{1}{n+1}) * N(y_{n+1} - y_{n+2}, \frac{1}{n+1}) * \dots * N(y_{n+q-1} - y_{n+q}, \frac{1}{n+1})$$

$$\geq N(y_n - y_{n+1}, \frac{1}{n+1}) * \cdots \\ * N(y_{n+q-1} - y_{n+q}, \frac{1}{n+q}) \\ \geq (1 - \frac{1}{n+1}) * (1 - \frac{1}{n+2}) * \cdots * (1 - \frac{1}{n+q})$$

ightarrow 1 as n tends to ∞

Therefore $\{y_n\}$ is a Cauchy sequence in X. Since X is complete $\{y_n\}$ converges to y in X.

Next we prove $x_n + M \rightarrow y + M$ in X/M.

$$N((x_n + M) - (y + M), t) = N(x_n - y + M, t)$$

= sup((N(x_n - y + m, t)/m \in M)
= sup((N(x_n + m - y, t)/m \in M)
\ge N(x_n + m - y, t) \dots m \in M

98

$$N((x_n + M) - (y + M), t) \ge N(y_n - y, t)$$

> 1 - \epsilon, \forall n \ge n \ge n_1,

implies $x_n + M \rightarrow y + M$.

Thus we have obtained a convergent subsequence of the Cauchy sequence $\{s_n + M\}$, this means $\{s_n + M\}$ is convergent.

Therefore X/M is complete. \Box

REFERENCES

- [1] O. P. Ahuja, Khalil Ahamed and P. K. Jain, *Functional analysis*, New age international (P) Limited Publishers (1995).
- [2] S. C. Bose, Introduction to functional analysis, Macmillan India Limited (1992).
- [3] Clementina Felbin, *Finite dimentional fuzzy normed linear spaces*, Fuzzy sets and systems, 48 (1992) 239–248.
- [4] C. L. Chang, Fuzzy topological spaces, Journel of Math. Anal. Applns. 24 (1968) 182–190.
- [5] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and systems 64 (1994) 1–5.
- [6] A. George, *Studies in fuzzy metric spaces*, Ph.D Thesis I. I. T. Chennai, India (1995)
- [7] Kaleva and Seikkala, *On fuzzy metric spaces*, Fuzzy sets and systems 12 (1984) 215–229.
- [8] A. K. Katsaras and D. B. Liu, *Fuzzy vector spaces and fuzzy topological vector spaces*, J. Math. Anal. Appln., 58 (1977) 135–146.
- [9] A. K. Kastras, *Fuzzy topological vector spaces I*, Fuzzy sets and systems 6, (1981) 85–95.
- [10] A. K. Kastras, Fuzzy topological vector spaces II, Fuzzy sets and systems 12, (1984) 143–154.
- [11] B. V. Limaye, Functional Analysis, Willey Eastern Ltd. New Delhi, India (1981)
- [12] Magie Jose, A Study of fuzzy normed Linear Spaces, Ph.D Thesis, University of Madras, Chennai (2000)
- [13] Shich-Chuan Cheng and John N. Mordeson, Fuzzy Linear Operators and Fuzzy Normed Linear Spaces, Bull. Cal. M ath. Soci. 86 (1994), 429–436.

Fuzzy bounded linear maps and quotient spaces

- [14] D. Somasundaram, Functional Analysis, S. Viswanathan Publishers Pvt. Ltd. (1994).
- [15] L. A. Zadeh, Fuzzy Sets Information and control, 8 (1965) 338-353.