\qquad
\qquad

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2009
 Mathematics-Complementary Course MM IC 01—MATHEMATICS

pie : Three Hours
I. Objective Type Questions - Answer all 12 questions ($12 \times 1 / 4=3$ weightage)

1. $P(x)$ and $Q(x)$ are polynomials and $Q(c) \neq 0$ then $\lim _{\lambda \rightarrow c}{ }_{Q(x)}^{P(x)}-$
2. 3. $\lim _{x \rightarrow 2} \frac{f(x)-5}{x-2}=$ then ${ }^{:} \quad f(x)=\cdots$
1. The function $f(x)=\frac{\cos \boldsymbol{x}}{\mathrm{x}}$ is not continuous at $\mathbf{x}=--$
2. The slope of the curve $y=1$ at $x=1$ equals ...
3. If $\lim f(x)=\frac{1}{2}$, then $\frac{f(x) \cos x}{x-1}-\ldots$
4. The absolute maximum value of $f(x)=-\mathrm{x}-4,-4 \leq x \quad$ is at $\mathrm{x}=\ldots$.
5. If $\mathbf{f}^{\prime}(\mathbf{x})>\mathbf{0}$ for every x in (a, b), then f is \quad in (\mathbf{a}, \mathbf{b}).
6. The horizontal asymptote of the curve $y=-$ is ...
7. If f is continuous and $\int_{1} f(x) d x=-4$ and $\mathbf{f} f(x) d x=6$ then $\int_{2}^{-} f(x) d x=$.
8. If f is integrable on $[\mathbf{a}, \mathrm{b}]$, then the average value off on $[\mathbf{a}, \mathrm{b}]$ is $a v(f)$ $\underset{d x}{d}\left(\begin{array}{cc}x & 1 \\ 0 & 1+t^{2} d t\end{array}\right)=$
9. If f is smooth on $[a, b]$, the length of the curve $\mathbf{y}=f(\mathbf{x})$ from a to b is $L=$
II. Short answer type questions-Answer all 9 questions ($9 \times 1=9$ weightage)
10. If $f(x)=2 x-4$ and $x_{0}=5, E=0.2$ and $L=6$, find $8>0$, such that $0<-x_{v} \mid<$ implies if (\mathbf{x}) $-\quad<e$.
11. For what values of a is $f \quad \left\lvert\, \begin{gathered}x^{2}-1 \times<3 \\ 2 a x \quad \mathbf{x} \geq 3\end{gathered}\right.$ continuous at $x=3$?
12. Find the value of c that satisfies the mean value theorem for the function $f(x)=x^{2}+2 \mathrm{x}--1$ on $[0,1]$.
13. If x moves from left to right through the point $c=2$, is the graph of $1(x)=x^{3}-3 \mathrm{x}+2$ rising or falling? Justify your answer.
14. Use Sandwich theorem to find the asymptotes of $y=2+\stackrel{-2-}{x}$
15. Find the inflection point of the curve $f(x)=x^{3}-3 \mathrm{x}+3$.
16. Consider the function $f(x)=x^{2}-1$ on $[0,2]$. Partition the interval into four subintervals of equal length. Find the Riemann $\operatorname{sum}_{k=1}^{4} f\left(c_{k} \Delta c_{k}\right.$ where c_{k} is the left end point.
17. State the mean value theorem for definite integrals.
18. Find the area between the curves $y=\sec x$ and $y=\sin x$ from 0 to

III. Short essay or paragraph questions - Answer any 5 questions from 7 ($\mathbf{5 \times 2 = 1 0}$ weightage)

22. Draw the graph of the function

$$
f(x)=\begin{gathered}
3-x, x<2 \\
2, x=2 \\
\overline{2}, x>2
\end{gathered}
$$

Find the limits or explain why they do not exist?
a) $\lim _{\lambda \rightarrow L^{+}} f(x)$
b) $\lim _{x \rightarrow c^{-}} f(x)$
c) Does $\lim _{\wedge \rightarrow\llcorner } f(x)$ exist? If so what is it? If not. why?
23. If a function is differentiable at $\mathrm{x}=\boldsymbol{c}$, prove that it is continuous at $x=c$. Is the converse true? Justify your answer.
24. If $\mathbf{b}, \mathbf{c}, \mathbf{d}$ are constants, for what value of b will the curve $\mathbf{y}=\mathbf{x}^{3}+b x+c x+d$ has a point of inflection at $\boldsymbol{x}=1$.
25. Find the average value of $f(x)=3 x^{2}-3$ on $[\mathbf{0 , 1}]$. At what points in the interval does this function assume its average value?
26. Find the area of the region between the curve $y=4-x^{2}, 0 \quad$ and the x-axis.
27. The region between the curve $\mathbf{y}=\quad, 0 \leq x \leq 2$, and the \mathbf{x}-axis is revolved about the \mathbf{x}-axis. Find the volume of the solid generated.
28. Applying L'Hospital's rule find $\lim _{x \rightarrow \infty}$
IV. Essay questions - Answer 2 questions from 3 ($2 \times 4=8$ weightage)
29. Sketch the graph of $y=\sin (1 / x)$ and show that $y=\sin (1 / x)$ has no limit as x approaches zero from either side.

Or
If f and g are continuous functions, then prove that
a) $f+g$ is continuous
b) fg is continuous
30. Plot the graph and find the derivative at each critical point and determine the local extreme values.

$$
\mathbf{y}=\left\{\begin{array}{l}
-x^{-}-2 x+4, x \quad 1 \\
\left(-x^{2}+6 x-4, x>1\right.
\end{array}\right.
$$

31. Use definite integral to estimate the sum of the square roots of the first n positive integers, $\mathbf{f}+\quad+\cdots+\sqrt{n}$.

> Or

Find the length of the curve $\mathbf{y}=x^{3 / 2}$ from $x=0$ to $\mathbf{x}=4$.

