Name.....

D 74380

(Pages: 4)

Reg. No.....

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014

Complemental Course-Mathematics

MAT IC 01-MATHEMATICS

Three Hours

Maximum : 80 Marks

$\textbf{Section}\ A$

Answer all **twelve** questions.

- 1. Evaluate Lt $\frac{x^2 + 3x 10}{x + 5}$
- 2. At what points are the function $Y = \overset{\cos x}{\leftarrow} \overset{\circ}{\leftarrow} \overset{\circ$
- 3. Find the slope of $f(x) = x^2 + 1$ at (3, 7).
- 4. Find the derivative of y x^2 using the definition of derivative.
- 5. Find the second derivative of Y = $\frac{1}{3x^2} \frac{5}{3x^2}$

6.- How fast does the area of a circle change with respect to the diameter when the diameter is 8 m ?

- 7. Find the critical points of $f(x) = \frac{2x3}{6} 3x^2$.
- 8. Graph the parabola $y = x^2$.
- 9. Find $\underset{x \to \infty}{\text{Lt}} \frac{2x+3}{5x+7}$.

Y Evaluate the sum of the first 20 cubes.

¹ ¹. State the mean value theorem for definite integrals.

¹² kind the intersection points of $f(x) = 2 - x^2$ and g(x) = -x.

(12 x 1 = 12 marks)

Turn over

Section B

Answer all nine questions.

13. If
$$2x^2 < f(x) < -x^2 - 1 < x < 1$$
, find $Lt f(x)$

- 14. Prove that $\lim_{x \to 31} f(x) = 1$ if $f(x) = \begin{cases} -2 & 0 & 1 \\ 2, & x = 1 \end{cases}$.
- 15. Suppose Lt f(x) = 5 and Lt g(x) = -2. Find :

(i)
$$\operatorname{Lt}_{\to c}[f(x) + f(x)]$$
; and (ii) $f(x) - g(x)$

- 16. Find the derivative of Y = $\frac{1}{(x^2 1)(x^2 + x + 1)}$
- 17. Find the equation of the tangent to the curve $y = x^3 4x + 1$ at (2, 1).
- 18. Find $\operatorname{Lt}_{x \to 0} \frac{8x^2}{\cos x 1}$
- 19. Find the linearization of $1(x) = x^3 x$ at x = 1.
- 20. Graph the function $Y = \frac{1}{2x+4}$
- 21. Find the area of the region enclosed by $y = x^2 2$ and y = 2.
- 22. Find the function f(x) whose derivative is $\sin x$ and whose graph passes through (0, 2).
- 23. Find the derivatives of all orders of $\frac{5}{120}$.
- ^{24.} State both parts of the fundamental theorem of calculus.

 $(9 \ge 2 = 18 \text{ marls})$

Section C

Answer any six questions.

25. Show that $=\sin(\frac{1}{x})$ has no limit point as x approaches zero from either side. Also ketch the graph of this function.

26. Evaluate
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$$

- 27. The curve y = ax + bx + c passes through (1, 2) and is tangent to y = x at the origin. Find a, b, c.
- 28. State and prove the product rule for derivatives. Use it to find the derivative of $y = (x^2 + 1)(x^3 + 3)$.
- 29. Find the intervals on which $f(\mathbf{x}) = \frac{\mathbf{x}^2}{\mathbf{x} 2}$, $\mathbf{x} \neq 2$ is increasing and decreasing. Identify local extrema if they exist.
- 30. Define average value of an integrable function over a closed interval. Find the average value of $f(x) = 3x^2 1$ on [0,1], where in the given interval does f(x) assume its average value.
- 31. Show that Lt (1 + --- e).
- 32. An object is dropped from the top of a 100 m high tower. Its height above ground after 't' seconds is $(100 4.9 t^2) m$. How fast is it falling 2 seconds after it is dropped ?
- 33. Find the derivative $\overline{dx}_{0} = \int_{0}^{1} \cot dt$ by (i) evaluating the integral and differentiating the result; and
 - (ii) by differentiating the integral directly.

 $(6 \times 5 = 30 \text{ marks})$

Section D

Answer any two questions.

- 34. (i) Find the area of the region enclosed by the curves $x + 4y^2 = 4$ and $x + y^4 = 1$ for x > 0.
 - (ii) Find the volume of the solid generated by revolving the region bounded by $y = x^2$, y = 0, x = 2 about the x-axis.
- 35. (i) Graph the function $y = x^4 4x^3 + 10$ by finding the first and second derivative.

(ii) Evaluate
$$\operatorname{Lt}_0 \frac{x}{\ln(\sec x)}$$
.

(iii) Evaluate $\sum_{k=1}^{4} \cos^{kit}$

Turn over

36. (i) Let
$$f(x) = \begin{vmatrix} 3-x, x < 2 \\ x \\ 2^{-1}, x \ge 2 \end{vmatrix}$$
. Find :
(a) $\underset{x \to 2^{+}}{\overset{\text{Lt}}{2} + 1, x \ge 2}$. Find :
(b) Does $\underset{x \to 2^{-}}{\overset{\text{Lt}}{2} + 1} f(x) = 1(x)$
(c) $\underset{x \to 4^{-}}{\overset{\text{Lt}}{2} + 1} f(x) = 1(x)$
(d) Does $\underset{x \to 4^{-}}{\overset{\text{Lt}}{2} + 1} f(x) = 1(x)$
(e) $\underset{x \to 4^{-}}{\overset{\text{Lt}}{2} + 1} f(x) = 1(x)$
(f) Does $\underset{x \to 4^{-}}{\overset{\text{Lt}}{2} + 1} f(x) = 1(x)$
(g) Does $\underset{x \to 4^{-}}{\overset{\text{Lt}}{2} + 1} f(x) = 1(x)$
(h) Does $\underset{x \to 4^{-}}{\overset{\text{Lt}}{2} + 1} f(x) = 1(x)$
(h) Does $\underset{x \to 4^{-}}{\overset{\text{Lt}}{2} + 1} f(x) = 1(x)$

(ii) Show that the line y = mx + b is its own tangent at any point $(x_0, mx_0 + b)$.

 $(2 \times 10 = 20 \text{ marks})$