(Pages: 2)

FIRST/SECOND SEMESTER B.Sc. DEGREE EXAMINATION MARCH/APRIL 2009

Mathematics (Subsidiary)
Paper I---ANALYTICAL GEOMETRY AND CALCULUS
(2001 admission onwards)
Maximum : 65 Marks

me : Three Hours
Maximum marks that can be scored from Unit I is 20 ; Unit II is 30 ; and Unit III is 15.

Unit I (Analytic Geometry)

(Maximum Marks : 20)

1. Change $x^{2}+y^{2}+z^{2}+6 x y=1$ into spherical polar co-ordinates.

If the normal at the point $\left(a t_{1}^{2}, 2 a t_{1}\right)$ on the parabola $y^{2}=4 a x$ meets again at $\left.\quad, 2 a t_{2}\right)$ on the curve. Show that $t 2=-$
t_{1}
3. Find the centre, foci and directrices of the ellipse $4 x^{2}+9 y^{2}-48 x+72 y+144=0$. (8 marks)
4. Transform the equation $4 \mathrm{x}^{2}+2 \sqrt{3 x} \mathrm{y}+2 \mathrm{y}^{2}=1$ by rotating the axis through an angle 30° through the origin.
5. Find the centre and radius of the sphere :

$$
x^{2}+y^{2}+z^{2}+4 x+3 y+3 z+20
$$

Unit II (Differential Calculus)
 (Maximum Marks : 30)

6. Find the derivatives of
(2 marks).
(a) $y=\log _{\ldots}(\cosh x)$.
(b) $y=\sec h \quad \begin{aligned} & x \\ & a,\end{aligned}$
7. If $\mathbf{y}=\mathrm{a} \cos (\log x)+b \sin (\log x)$, prove that

$$
+(2 \mathrm{n}+1) x y_{n+1}+\left(\mathrm{n}^{2}+1\right)=0 .
$$

8. Verify Rolle's theorem for the function c such that $f(c)=0$.
9. Show that

$$
\tan \left(\frac{\pi}{4}+x=1+2 x+2 \times 2 \quad 3 \quad+\frac{10}{3} x+\ldots\right.
$$

using Maclurin's series.
(8 marls.
10. For the curve $y\left(a+\quad a x\right.$, prove that $\left(\frac{2 \rho}{\mathbf{a}}=\left(\frac{y}{x}\right)^{2} \quad \mathrm{x}^{2}\right.$, where p is the radius of curvature.
11. Find all asymptotes to the curve $\mathrm{y}^{3}+x^{-} y+2 x y^{-} \mathrm{y}+1=0$.
12. If $\boldsymbol{u} f(y-z, z-x, x-y)$, prove that $\begin{array}{lll}a u & \frac{a u}{\partial x} & \frac{\mathrm{au}}{\partial z} \\ 0 & \\ & \text {. }\end{array}$
13. Verify Euler theorem for : $\mathrm{x}^{3} \log \left(\frac{y}{\mathrm{x}}\right.$.
14. Given $u=\sin \left(\mathrm{x}^{2}+\mathrm{v}^{2}\right)$, where $\mathrm{x}=3$ t and $\mathrm{Y} \frac{1}{1+t^{2}}$ determine $d u$

Unit III (Integral Calculus)

(Maximum Marks : 15)
15. Use trapezoidal rule to evaluate $\int_{U} \mathrm{x}^{3} d x$ considering five sub intervals.
16. Find the area bounded by one loop of the curve ${ }_{r}$ a $\sin 30$.
17. Find the volume generated by revolving one arch of the
$x \quad a(0+\sin \theta)$, $x a(0+\sin \theta), \mathrm{y}=\mathrm{a}(1+\cos 0)$ about the x -axis. re

