\qquad
\qquad

FIRST/SECOND YEAR B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2009

Part III-Chemistry (Main)

Paper I-THEORETICAL CHEMISTRY

(Improvement)
[Common with B.Sc. Polymer Chemistry (Main)
Paper I and B.Sc. Industrial Chemistry (Main) [Regular]--Paper I]

Time : Three Hours

Maximum : 55 Marks

Section A

Answer any sixteen questions.
Each question carries 1% marks.

1. Calculate the de Broglie wavelength of an electron travelling at 1% of the speed of light.
(Planck's constant $=6.626 \times 10^{-34} \mathrm{JS}$, Mass of electron $=9.1 \times 10^{\sim} \mathrm{kg}$.)
2. What is the uncertainty in momentum if we wish to locate an electron within. approximately 100 pm ? (Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$. and Planck's constant $\left.=6.626 \times 10^{\sim} \mathrm{JS}\right)$.
3. What is meant by Laplacian operator ?
4. Determine the term symbol of the ground state of Helium.
5. How many electrons in an atom may have the following quantum numbers ? $\mathrm{n}=4, \mathrm{~m}_{\mathrm{s}}=-\mathrm{V} 2$.
6. Sketch the shapes of $d_{x z}, d_{x^{2}-y^{2}}$ and $d z$ orbitals.
7. Arrange the following elements in the increasing order of their electron affinity : P, S; CI, F. Justify your answer.
8. Which of the following will have the largest and smallest size?
$\mathrm{Mg}, \mathrm{Mg}^{\sim}$, $\mathrm{Al}, \mathrm{Al}^{\sim}$. Give reason.
9. Arno Na and Mg , which would have the largest difference between first and second ionisation energies. Briefly explain your answer.
10. Give the Born-Lande equation and explain the terms.
11. Why is the dipole moment of NH_{3} greater than that of NF_{3} ?
12. Which is more stable, O_{2}^{-}or OF ? Why?
13. Dra v the structure .of diborane.
14. State and explain Geiger-Nuttal rule.
15. Three quarters of ${ }^{\wedge n} \mathrm{Sr}$, a radioactive element, disappeared in 56 years. What is the half-life period of ${ }^{n} \mathrm{Sr}$? What is the rate constant?
16. What is meant by artificial radioactivity? Give an example.
17. Which of the following molecules will be microwave active? $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2}, \mathrm{HCl}$. Give reason.
18. Sketch the fundamental modes of vibration of $\mathrm{H}_{2} \mathrm{O}$ molecule.
19. State the Frank-Condon principle.
20. Give the self ionisation reaction of liquid SO_{2}.

$$
\left(16 \times 1^{1} / 2=24 \mathrm{r} \quad \mathrm{ks}\right)
$$

Section B

Answer any four questions.
Each question carries 4 marks.
21. (a) Sketch the radial probability distribution curves of 2 s and 2 p orbitals.
(b) Calculate the wavelength of the spectral line obtained when the excited electron of the h. rogen atom falls from the third orbit to the second orbit.

$$
(2+2=4 \text { marks })
$$

22. Give a brief account of the Pauling's and Mullikken's scale of electronegativity.
23. Calculate the lattice energy of LiF given that the enthalpy of (i) sublimation of Li is 155.2 kJ mol . ; (ii) dissociation of F_{2} is 150.6 kJ mol . ; (iii) ionisation of $\mathrm{Li}(\mathrm{g})$ is 520 k mol . ; (iv) electron affinity of $\mathrm{F}(\mathrm{g})$ is -333 kJ mol . and heat of the reaction is $-594.1 \mathrm{~kJ} \mathrm{~mol}{ }^{1}$
24. Discuss VSEPR theory. Explain the shapes of XeF_{z} and IF. on the basis of VSEPR them 7.

Explain how moment of inertia and bond length can be determined from rotational spe a.
26. (a) What are protic and aprotic solvents ? Give examples for each.
(b) Explain the Lewis concept of acids and bases. Which of the following can act as is icid $\mathrm{BF}_{3}, \mathrm{NH}_{3}, \overline{\mathrm{~F}}, \mathrm{SiF}_{4}$. Justify your answer.

$$
\begin{aligned}
& \left(2+2 \mathrm{mar}^{r}\right. \\
& {[4 \times 4=16]^{2}}
\end{aligned}
$$

Section 'C

Answer any two questions.
Each question carries $7 ½$ marks.
27. (a) State and explain the Postulates of quantum mechanics.
(b) Calculate the energy of the first two energy levels of an electron confined to a one-dimen: box of length $10^{-10} \mathrm{~m}$.

$$
\left(4+3 / 2=7^{1} / 2 n\right.
$$

(a) Draw the MO level diagram of CO molecule. Calculate its bond order and comment on magnetic property.
(b) Give a brief account of inter and intra molecular hydrogen bonding taking suitable examples.

$$
\left(4+3^{1} / 2=71 / 2 \text { marks }\right)
$$

29. (a) An archeological sample shows ${ }^{14} \mathrm{C}$ activity of 1.52 disintegrations per minute per gram of carbon. A freshly cut piece of wood shows a ${ }^{14} \mathrm{C}$ activity of 15.2 disintegrations per minute per gram of carbon. Calculate the age of the sample $t_{-/ 2}$ of ${ }^{14} \mathrm{C}$ is 5760 years.
(b) Explain the principle and working of Aston's mass spectrograph.

$$
\left(4+3^{1} / 2=7^{1} / 2 \text { marks }\right)
$$

30. (a) Give a brief account of (i) chemical shift and (ii) spin-spin coupling.
(b) Explain the selection rules of rotational and vibrational spectra.

$$
\begin{gathered}
(4+3 \mathrm{Y} 2=7 \mathrm{Y} 2 \mathrm{marks}) \\
{[2 \times 71 / 2=15 \mathrm{marks}]}
\end{gathered}
$$

