(Pages 3)
Name $\qquad$
$\qquad$

## SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2011

# (CCSS) <br> Complementary Course <br> MM 2C 02—MATHEMATICS 

## Time : Three Hours

Maximum : 30 Weightage
I. Objective Type Questions. Answer all twelve questions :

1 Define hyperbolic cosine function in terms of exponential function.

2 If $f$ is continuous on [a, co ), then, $\lim _{-4 \mathrm{c}}{ }_{\mathrm{a}} f(x) d x=$ $\qquad$

3 The derivative of $\sec h 2 x$ with respect to $\mathbf{x}$ is = $\qquad$
4 The value of $\sin h^{-1} 1$ using logarithm is $\qquad$
5 When does a sequence of real numbers $\left\{a_{n}\right)$ converge to the number $L$.
6 The $n^{\text {th }}$ term of the sequence $0,1,2,2,3,3,4,4$, is $\qquad$

7 Find $_{n=9}\binom{1}{3}$.

8 The least upper bound of the sequence $\frac{1}{2}, \frac{2}{2}, 4^{\prime}, \quad n+1^{\prime} \cdots$ is

9 Define absolute convergence of the series $\sum a_{n}$.
10 Define a power series about $x=$ a.
11 The cylindrical co-ordinates of $(0,1,0)$ (in Cartesian coordinate) is $\qquad$
12 State the chain rule for functions of two independent variables.
II. Short Answer questions. Answer all nine questions :

13 Evaluate the integral $\int \sin \mathrm{h} 2 x d x$.
14 Use partial fractions to find the sum of the series $\sum_{(4 n-3)(4 n+1)}^{4}$ converges.

15 Show that $\log _{n \rightarrow \infty} \ln n=0$.

16 Determine the convergence of the series $\underset{n=12 n-1}{ } \underline{1}$

17 Prove or disprove that $\mathrm{E}_{\mathrm{n}=1}\left(\frac{2}{3}\right)^{n}$ converges. $^{n}$
18 State Rearrangement theorem for absolutely convergent series.
19 Define boundary point. Give an example.
20 For what values of x does the following power series converge ?

$$
\frac{x^{2}}{2} \frac{x^{3}}{3}
$$

21 Find the Taylor series expansion of $f(x)=e x$ at $x=0$.
III. Short essay questions. Answer any five questions :

22 Show that $\left.\sin \mathrm{h} x=\ln \mid \mathrm{x}+\bar{x}^{\overline{+}}+\overline{1}\right),-00<x<00$.

23 Determine the convergence or divergence of the series $\sum_{\mathrm{n}=1}^{\infty}\left(\begin{array}{ll}1 & \frac{1}{n} \\ n 2\end{array}\right.$

24 State term by term differentiation theorem. Express $f(x)=\frac{{ }^{\top}}{1-x}|x|<1$ as a power series.
Use the theorem to find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
25 Find the length of the asteroid $x=\cos ^{-} t, y=\sin ^{-} t, 0<t<2 \pi$.
26 Graph the function $r^{2}=\sin 20$.
27 Find the $f_{x}, f_{y}$ and $f_{z}$ for the function $\mathrm{f}(\mathrm{x}, \mathrm{y}, z)=x-\mathrm{v}_{\mathrm{y}} 2 \quad z^{2}$
28 Find the linearization $L(x, y, z)$ of the function $f(x, y, z)=e x+\cos (y+z)$ at $(0,0,0)$.
IV. Essay questions. Answer any two questions:

(b) Identify the function :

$$
f(x)=x-\frac{x^{0}}{3}+\frac{x^{2}}{5}-\quad ;-<x<1
$$

30 (a) Find the area of the region in the plane enclosed by the cardioid $r=2(1+\cos 0)$.
(b) Find the spherical co-ordinate equation for the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+(z-1)^{2}=1$.

31 (a) If $f(u, v, w)$ is differentiable and $u=x-y, v=y-z$ and $\mathbf{w}=z-x$ then show that

$$
\frac{\partial f}{\partial x}+a y+\frac{\partial z}{}-0
$$

(b) Show that $f(x, y, z)=\mathbf{x}^{2}+y^{2}-2 z^{2}$ satisfies the Laplace equation.

$$
\text { ( } 2 \times 4=8 \text { weightage) }
$$

