\qquad
\qquad

SECOND YEAR B.Sc. DEGREE EXAMINATION SEPTEMBER/OCTOBER 2009

Part III-Mathematics-(Subsidiary)
aper II-ALGEBRA, COMPLEX NUMBERS, MATRICES VECTORS AND DIFFERENTIAL EQUATIONS

(2001 Admissions)

Maximum marks that can be obtained from
 Unit I is 35, Unit II is 25 and Unit III is 35.

Unit I (Algebra, Complex Numbers, Matrices)

Maximum marks that can be obtained from this unit is 35
n the infinite series $\frac{1}{3} \frac{1.3}{3} \frac{1}{3}+1.3 .5 \quad \frac{1.3 .5 .7}{3.6 .9 .12}+\cdots$
2. bind the sum to infinity of $\frac{1^{3}}{1!}+2^{3}+3^{3},+\cdots$
3. Prove that $\log _{\mathrm{e}} x=\begin{aligned} & x-1 \\ & x+1\end{aligned} \frac{x-1,}{2} \frac{\mathbf{1} \mathbf{X}^{\mathbf{3}}-1}{2(x+1) 2} \mathbf{3 (x + 1) 3}$.
4. 14. $\sin ^{2}(A+i B)=x+i y$, show that

5. Express $\sin 58$ in terms of $\sin 0$
6. Express $\tan 40$ in terms of $\tan 0$
7. Prove that $32 \cos 0=\cos 60+6 \cos 40+15 \cos 20+10$
8. By reducing into normal form, find the rank of the matrix $A=\left|\begin{array}{cccc}\mathbf{6} & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 2 & 3 & 9 & \mathbf{- 1 0} \\ \mathbf{1 6} & 4 & \mathbf{1 0} & \mathbf{1 5}\end{array}\right|$ (5 marks)
9. Find the values of k, for which the equations

$$
\begin{aligned}
x+y+z & =1 \\
x+2 y+3 z & =k \\
x+5 y+9 z & =k^{2}
\end{aligned} \quad \text { and }
$$

have a solution. For these values of k, find the solutions also.
10. Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3\end{array}\right]$
11. If A is an eigen value of an orthogonal matrix, show that $\frac{-}{\lambda}$ is also its eigen value.
12. Using Cayley-Hamilton theorem, find A where $A=\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]$

Unit II (Vectors)

Maximum marks that can be obtained from this unit is 25
13. Prove that $[\vec{a}, \vec{b}+\vec{c}, \vec{a}+\quad=0$
14. Prove that $\left[\vec{a} \times b, \vec{b} \times \vec{c}, \vec{c} \times=[\vec{a}, \vec{b}, \vec{c}]^{2}\right.$
15. Find the value of A such that the vectors $\vec{i}+27-3 \vec{k}, \quad 27+\quad 3 \vec{i}+\lambda \vec{j}+\vec{k}$ are coplanar.
16. Find the angle between the tangents to the curve $x=5 t^{2}, y=t$, $z=3-t^{3}$ at the points $t= \pm 1$..
17. The acceleration of a particle at a time t is given by $f=-3 t \vec{k}$ Find the velocity vector v , given that $\vec{v}=2 \mathrm{i}+j$ when $t=0$.
18. Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point $(1,2,-1)$ (4 marks)
19. Find the value of A , if $P=(2 \mathrm{x}-5 y) \vec{i}+(x+\lambda y) \vec{j}+(3 \mathrm{x}-\boldsymbol{z}) \vec{k}$ is solenoidal.
20. Show that $P=\left(x^{2}-\quad\left(y^{2}-z x\right) \vec{j}+\left(z^{2}-x y\right) \vec{k}\right.$ is irrotational and hence find its scalar potential.
(8 marks)
21. Show that $\operatorname{div}^{\operatorname{grad}}\left({ }^{1}\right)=0$.
22. Using the line integral, compute the work done by the force $P=\left(\begin{array}{ll}2 y+3\end{array}\right) \vec{i}+x z \vec{j}+\left(\begin{array}{ll}y z & x\end{array}\right) \vec{k}$ when it moves a particle from the point $(0,0,0)$ to the point $(2,1,1)$ along the path $x=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}, \mathrm{z}=$

Unit III

Maximum marks that can be obtained from this unit is 35
23. Solve $\left(\mathrm{y}^{2}+x y\right) d x+\left(\mathrm{x}^{2}-y x\right) d y=0$
24. Solve $x \frac{d_{0}}{d_{i t}}+\mathrm{y}=x y$
25. Solve $(D-4 D+13) y=e^{x} \cos 3 x$
26. Solve $(D-2 D+D) y=x^{2}+e x$
27. Find $L\left(e^{-t} \cos t\right)$
28. Using convolution theorem find the inverse transform of (s2 $\left.a^{2}\right)^{2}$
29. Using Laplace transform solve $y^{\prime \prime} \quad+2 y=4$, given that $y(0)=2, y(0)=3$
30. Find the Fourier series for the function defined by $f(x)=x^{2}+x$ in $-\pi<x<7 \mathbf{r}$ and $f(x+2 \pi)=f(x)$
31. Obtain the half-range cosine series for the function
$f(x)= \begin{cases}\cos x & , 0<x<\frac{7}{2} \\ 0 & \frac{\pi}{2}<x<7 \mathrm{r}\end{cases}$
32. Using Taylor's series method, find $y(0.1)$ and $y(0.2)$
given that $\frac{d a}{d x}=x+y$ and $y(0)=1$
(8 marks)
33. Using Euler's method, compute $y(0.2)$ in steps of 0.1 if $\frac{d y}{d x}=x-y$ and $y(0)=\mathbf{1}$ ($\mathbf{1 0}$ marks)

