\qquad
\qquad

SECOND YEAR B.Sc. DEGREE EXAMINATION SEPTEMBER/OCTOBER 2010

Part III—Mathematics (Subsidiary)
Paper II—ALGEBRA, COMPLEX NUMBERS, MATRICES, VECTORS AND DIFFERENTIAL EQUATIONS
(2001 admissions)

Time : Three Hours
Maximum : 95 Marks

Unit I (Algebra, Complex Numbers, Matrices)

Maximum marks that can be obtained from this Unit is 35 .

1. Simplify :

$$
\begin{gathered}
\cos 50-i \sin 50)^{2}(\cos 7 \theta-i \sin 7 \theta)^{n} \\
(\cos 40-i \sin 40)^{9}(\cos 0+i \sin 0)^{5}
\end{gathered}
$$

2. Prove that $\underset{\sin 0}{\therefore-\pi n}=8 \cos ^{n} 20+4 \cos ^{\mathbf{t}} 20-4 \cos 20-1$.
3. Prove that $32 \sin ^{\circ} 0 \cos ^{\mathrm{t}} 0=\cos 60-2 \cos 40-\cos 20+2$.
4. Separate $\tan ^{-1}(x+i y)$ into real and imaginary parts.
5. Prove that $\sinh \quad z=\log \left[z+\sqrt{z^{2}}+1\right]$.
6. If $(1-3 x)^{z^{\prime}}+(1-43$ is approximately equal to $a+b x$ for all small values of x. Find a and \boldsymbol{b}.

(5 marks)
7. Find the coefficient of $x^{n} \frac{\text { in } 1+2 \mathrm{x}-3 \mathrm{x}^{2}}{e^{x}} \quad$ (5 marks)
8. Show that $\left(1+\frac{1}{n}\right)^{\frac{1}{2}}=e\left(\frac{1}{12 \mathrm{n}^{2}}\right.$ nearly when n is large.
9. Reduce the following matrice to normal form and hence find its rank $\left|\begin{array}{cccc}2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2\end{array}\right|$
10. Determine the values of a and b for which the system

$$
\begin{aligned}
& x+2 y+3 z=6 \\
& x+3 y+5 z=9 \\
& 2 x+5 y+a z
\end{aligned}
$$

has (i) no solution ; (ii) unique solution ; and (iii) infinite number of solution.
(7 marks)
11. Find the eigen values and eigen vectors of $\left|\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right|$.
12. Find A^{-1} if $\mathbf{A}=\left|\begin{array}{rrr}7 & 2 & -2^{\prime \prime} \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right|$ using Cayley-Hamilton theorem.

Unit II (Vectors)

Maximum from this unit is $\mathbf{2 5}$.
13. Prove that $[\bar{a}+b, \quad+\mid=2[\bar{a}, \bar{b} \bar{c}]$.
14. If a and b lie in e plane normal to the plane containing \bar{c} and a. Show that $(\bar{a} \times \sigma) \cdot(\bar{c} \times \bar{d})=0$. (5 marks)
15. Given $\mathbf{a}=2 \mathbf{i}+2 \mathbf{k}, \bar{b}=4 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}, \quad=i-2 \mathbf{j}+3 \mathrm{k}, d=2 i-j+5 k$. Find $\left(a+\quad \mathrm{x}\left(\bar{b}_{x} \mathbf{d}\right)\right.$. (5 marks)
16. If a and b are constant vectors prove that $\mathrm{V}(\bar{r} \mathbf{a}=\mathbf{a x} b$.
17. If a is a constant vector. Prove that :
(i) $\mathrm{r} \times \mathrm{a}$ is solenoidal.
(ii) $\operatorname{Curl}\left(\bar{r}_{\mathrm{x}} \mathrm{a}\right)=\mathrm{a}$.
(iii) $\operatorname{Grad}(\bar{a} \cdot \bar{r})=a$.
18. Show that $r^{n} \mathbf{r}$ is an irrotational vector for any value of \mathbf{n} but is solenoidal only if $\mathrm{n}=-3$.
19. Prove that $\nabla^{\wedge}\left(\mathrm{r}^{\prime \prime} \bar{r}\right)=\mathrm{n}(\mathrm{n}+3) r{ }^{\wedge}$.
(7 marks)
20. If $\mathrm{f}=x z i+y z j+z^{\wedge} k$. Evaluate \quad along the fectilinear path from $(0,0,0)$ to $(1,0,0)$ then to
$(1,1,0)$ and then to $(1,1,1)$.
$(6$ marks)
21. Find the angle between the surface $x^{2}+y^{2}-z=3$ and $x^{2}+y^{2}+z^{2}=9$ at a pount (2,-1,2).
Unit III (D
Maximun
$\left.\mathbf{1 + \boldsymbol { y } ^ { - }}\right) d \boldsymbol{x}=0$.
23. Solve $(x+2 y-2) d y+(2 x+y+2) d x=0$.
24.

(7 marks)
22. Solve $\left(x y^{2} \quad x^{32}\right) d y+\left(1+y^{-}\right) d x=0$.
25. Solve $\frac{d_{1}}{d x}+y \tan x=y^{3} \sec x$.
26. Solve $\left(\mathbf{D}^{2}+2 \mathrm{D}-3\right) \mathrm{y}=e^{\boldsymbol{x}}$ coax.
27. Find the inverse transform of $\cot ^{-1}(s+1)$.
28. Determine the Fourier expansion of $x \sin x$ in

29. Show that in the range | | |
| :--- | :--- | :--- | :--- | :--- | :--- |\(\quad n \times\left(n^{x}\right) \begin{gathered}R^{2}

=6\end{gathered}\)
(9 marks)
30. Solve by Taylor series method $\frac{d y}{d x}=x y^{\sim}+1$, given $\mathrm{y}(0)=1$ at $x=0.2$.
(7 marks)
31. Using modified Euler's method solve $\begin{aligned} & d y \\ & d x\end{aligned}=y+x 2, y(0)=1$ to find $y(0.2)$ correct to 3 decimals.

