Reg. No

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2012

> Mathematics-Complementary Course
> MM 3C 03-MATHEMATICS

Time : Three Hours

Maximum : 30 Weightage
I. Answer all questions. Each question of weightage

1 When is $\mathrm{M}(\mathrm{x}, y) d x+N(x, y) d y$ an exact differential equation ?
2 What is the Bernoulli equation ?
3 Solve: $y^{\prime \prime}=$
4 Define rank of a non-zero matrix ' A '.

5 Are the matrices	$\left.\begin{array}{cc}\mathbf{1} & 21 \\ \mathbf{1} & 1\end{array}\right]$ and	$\begin{array}{ll}2 & 4 \\ 3 & 3\end{array}$ equivalent?

6 What are the characteristic roots of $A=\left|\begin{array}{ccc}1 & 0 & 0 \\ 4 & 2 & 0 \\ 9 & -5 & 3\end{array}\right|$
7 What is the divergence of $\mathrm{a}=[3 x z, 2 x y,-y z]$?
8 What is the volume of a parallel piped with edge vectors \vec{a}, \vec{b} and ?
9 State Laplace's equation.
10 If a surface S is given by $g(x, y, z)=\mathbf{0}$, what is the unit normal vector to S ?
11 Give the parametric representation of the sphere $\mathbf{x}^{\mathbf{x}}+{ }^{\mathbf{y 2}}+\mathbf{z}^{\mathbf{2}}=\mathbf{a}^{\mathbf{2}}$
12 Give an example of a non-orientable surface.
($12 \times 1 / 4=3$ weightage)
II. Answer all questions. Each question of weightage 1.

13 Solve : $\left(1-\frac{d x}{}=1+x \cdot e^{x}, y(0)=1\right.$
14 Find an integrating factor for $(2 \boldsymbol{\operatorname { c o s }} \mathrm{y}+4 x) d x=x \sin y d y$.
$15 \quad$ Find the rank of $A=\left|\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 7 & 8\end{array}\right|$

16 If $=\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|$, use Cayley Hamilton theorem to find A^{4}.
17 If $\mathrm{a}=[1,1,0], \vec{b}=[3,2,1\}$ and $\mathrm{c}=[1,0,2]$, find the angle between a and \vec{b}
18 Find the tangential and normal accelerations of $\vec{r}(t)=5 t^{2} \hat{k}$,
19 Prove that curl $(\operatorname{grad} f)=\overrightarrow{0}$.
20 Check for path independence : $3 z d x+6 x z d z$.
21 Use Green's theorem to find the area enclosed by the circle $\mathrm{x}^{2}+=9$.

$$
\text { (} 9 \times 1=9 \text { weightage) }
$$

III. Answer any five questions from seven. Each question of weightage 2.

22 Solve : $(2 x-4 y+5) y^{\prime}+(x-2 y+3)=0$.
23 Find the rank by reducing to normal form.:

$$
\left.A=\begin{array}{cccc}
1 . & 2 & 0 & -1 \\
3 & 4 & 1 & 2 \\
-2 & 3 & 2 & 5
\end{array} \right\rvert\,
$$

24 Find the eigenvalues of $A=\left|\begin{array}{ccc}-2 & -8 & -12 \\ 1 & \mathbf{4} & \mathbf{4} \\ 0 & \mathbf{O} & \mathbf{1}\end{array}\right|$
25 Find the directional derivative off $=x y z$ along $[1,-2,2)$ at $(-1,1,3)$.
26 Test for exactness and hence evaluate :

$$
\underset{(0.0,0)}{\stackrel{(a, b, c)}{\leftarrow}} 2 x y d x+2 x^{2} y d y+d z
$$

27 Find the length of the catenary $\vec{r}(t)=t i+\cosh t j$ from $t=0$ to $t=1$.
28 Evaluate $\quad{ }_{\mathrm{n}} d \mathrm{~A}$ using the Divergence theorem, where:

$$
\overrightarrow{\mathrm{F}}=\left[{ }^{2}, 0, z^{2}\right] \text { and } \mathrm{S} \text { is the box }|x| \leq 1,|y| \leq 3,|z| \leq 2 .
$$

IV. Answer any two questions. Each question of weightage 4.

29 Find the Orthogonal trajectories of $\mathbf{y}=c \cdot e x$.
30 Verify Cayley Hamilton theorem for :

$$
\left.A=\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array} \right\rvert\,
$$

31 Verify Stokes theorem for $={ }^{2}, 5 x, 0$ and S is the square $0 \quad x \quad \leq y \leq 1, z=1$.
($2 \times 4=8$ weightage)

