\qquad
\qquad

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013

(UG-CCSS)

Core Course-Chemistry
 CH 3B 05-PHYSICAL CHEMISTRY-I

Time : Three Hours
Maximum : 30 Weightage

Section A

Answer all questions.
Each question carries 1/4 weight.
Fill in the blanks :

1. Reciprocal of viscosity is called
2. Kp is related to Kc as
3. The Joule-Thomson coefficient for an ideal gas is
4. Molar heat capacity of a system is defined as the increase in ——of the system per degree rise of temperature.

Answer in a word or sentence :
5 Define critical volume of a gas.
6. What is Boyle temperature?
7. What are fermions?

8 Give the SI unit of viscosity.
State whether True or False :
E. Surface tension in terms of parachor is given by $7=\begin{gathered}\mathrm{MD}_{-} 4 \\ {[\mathrm{P}]}\end{gathered}$
10. For a given sample of gas most probable velocity $>$ root mean square velocity $>$ average velocity.
11. A process is spontaneous if its free energy change is positive.
12. Electron is an example of a Boson.
(12 $\times 1 / 4=3$ weightage)

Section B
 Answer all the questions.
 Each question carries 1 weightage.

13. Write down the expression for Maxwell distribution of molecular velocities and explain the terms.
14. Define the terms collision frequency and collision number.
15. Calculate the inversion temperature of Hydrogen. The van der Waals' constants for it are $\mathbf{a}=2.44 \times 10^{-1} \mathrm{dm}^{-} \mathrm{atm}$ mot..$^{-2}$ and $\boldsymbol{b}=2.66 \times 10^{-2} \mathrm{dm}^{-}$M01. ${ }^{-1}$
16. Predict the effect of temperature and pressure on the reaction :

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathbf{O}_{2}(\mathrm{~g}) \quad 2503(\mathrm{~g}) ; \Delta \mathrm{H}=\mathbf{- 1 9 0} \mathbf{k J} \mathrm{mol} .
$$

17. For the reaction : $\mathbf{N}_{2}+\mathbf{0 2} \longrightarrow 2 \mathrm{NO} ; \mathrm{AG}^{\circ}=92.0 \mathrm{~kJ}$ at 2000 K . Calculate Kp at 2000 K .
18. Explain Joule-Thomson effect.
19. Differentiate between Intensive and Extensive properties giving example.
20. How is entropy related to thermodynamic probability?
21. Why do a drop of liquid assume spherical shape ?
(9 $\times 1=9$ weightage)

Section C

Answer any five questions.
Each question carries $\mathbf{2}$ weightage.
22. Define mean free path. How does it vary with pressure?
23. The van der Waals' constant $\mathrm{a}=3.6 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}$ and $b=4.28 \times 10^{-2} \mathrm{~L} \mathrm{~mol}^{-}$for CO_{2}, Calculate the critical temperature and critical volume.
24. Calculate the temperature at which the r.m.s velocity of \mathbf{H}_{2} is same as that of the molecules in $\mathbf{0}_{2}$ at 1000 K .
25. State Le Chatelier principle. Illustrate its application in two industrial processes.
26. Express internal energy, pressure, free energy and Helmholtz work function in terms of partitis function.
27. How does equilibrium constant vary with temperature?
28. Explain the concept of activity and activity coefficient.
($5 \times 2=10$ weightage)

Section D

Answer any two questions.
Each question carries 4 weightage.
29. Why do real gases deviate from ideal behaviour ? Express the critical constants in terms of ve Waals' constants.
30. Describe the Carnot's cycle and obtain an expression for efficiency.
31. (a) Derive the Van't Hoff equation.
(b) The equilibrium constant for the reaction $\mathbf{1}_{\mathbf{2}}+$ cyclopentene the gas phase is given by $\log K p=7.55-(22160 / 4.575 \mathrm{~T})$.
Calculate $\mathbf{A G}^{\circ}$ at $\mathbf{3 0 0}^{\circ} \mathbf{C}$.
$2 \mathrm{HI}+$ cyclopentadiene in

