Name
Reg. No.

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014

 (UG-CCSS)Core Course-Chemistry
CH3 B05-PHYSICAL CHEMISTRY-I
Time : Three Hours
Maximum : 30 Weightage
I. Answer all the twelve questions. Each question carries a weightage $1 / 4$. This section contains multiple choice, fill in the blanks and one word answer questions :

1 The RMS velocity of $\mathrm{SO}_{2}, \mathrm{CH}_{4}, \mathrm{O}_{2}$ and CO_{2} at any temperature is in the order :
(a) $\mathrm{SO}_{2}>\mathrm{CO}_{2}>\mathrm{O}_{2}>\mathrm{CH}_{4}$.
(b) $\mathrm{CH}_{4}=\mathrm{O}_{2}>\mathrm{CO}_{2}>\mathrm{SO}_{2}$.
(C) $\mathrm{CH}_{4}>\mathrm{O}_{2}>\mathrm{CO}_{2}>\mathrm{SO}_{z}$.
(d). $\mathrm{SO}_{2}>\mathrm{CO}_{2}>\mathrm{CH}_{4}=\mathrm{O}_{2}$.

2 The vapour pressure of a liquid is influenced by :
(a) Temperature.
(b) Surface area.
(c) Intermolecular force.
(d) All these.

3 An extensive property among the following is :
(a) Specific heat.
(b) Surface tension.
(c) Heat capacity.
(d) Molality.

4 Which among the following equilibria is not affected by pressure ?
(a) $\mathrm{N}_{2(\mathrm{~g})}+311_{2(\sigma}-2 \mathrm{NH}_{3(\mathrm{~g}) \cdot}$
(b) $\mathrm{PCl}_{\mathrm{b}(\mathrm{g})}-\mathrm{PC}_{3(\mathrm{O}}+\mathrm{Cl}_{2(\mathrm{O}}$.
(c) $\mathrm{N}_{\mathrm{Z}(\mathrm{g})}+\mathrm{O}_{\mathrm{Z}(\mathrm{g})} \longrightarrow 2 \mathrm{NO}_{(\mathrm{g})}$.
(d) $2_{\mathrm{SO} 2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \quad 2 \mathrm{SO}_{3(\mathrm{~g})}$. \qquad
5 The value of equilibrium constant of a reaction is not affected by :
(a) Temperature.
(b) Initial amount of reactants.
(c) Reacton stoichiometry.
(d) Constancy of volume or pressure at which the value is measured.

6 The temperature at which a real gas obeys ideal behaviour over a wide range of pressure is called \qquad

7 The work done by the system during free expansion is \qquad
8 For a spontaneous process at any temperature and pressure, the value of Gibb's free energy change is \qquad
9 Particles which obey Bose Einstein statistics are called \qquad
10 According to Le Chaterlier's principle endothermic reactions are favoured by \qquad
11 Name a substance, which possesses residual entropy.
12 Give one example of heterogeneous equilibria.
II. Answer all the nine questions. Each question carries a weightage 1 :
($12 \times \frac{1}{1} / 4=3$ weightage)
13 Write the van der Waals' equation for n moles of a gas and explain the terms.
14 What is compressibility factor of a gas?
15 Mention any two factors that affect the surface tension of a liquid.
16 What is meant by optical exaltation?
17 Define inversion temperature of a gas.
18 Calculate the difference between $\Delta \mathrm{H}$ and $\Delta \mathrm{E}$ for the reaction $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}(l)$
at 300 K .
19 State the third law of thermodynamics.
20 The activity of 2.5 moles of a gas changes from 0.05 to 0.35 at 300 K . Calculate the change in Gibb's free energy.

21 The value of Kc for the equilibrium $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{O}} \quad 2 \mathrm{NO}_{2(\mathrm{~g})}$ is found to be $6.45 \times 10^{-3} \mathrm{~mol}$ L^{-1} at $27^{\circ} \mathrm{C}$. Calculate the value of Kp at the same temperature.
III. Answer any five questions. Each question carries a weightage 2 :

22 How will you derive an equation for most probable velocity of a gas from Maxwell-Boltzmann distribution law?

23 What is parachor? How is it used to elucidate molecular structure?
24 Derive an equation for the work of isothermal reversible expansion of ' n ' moles of an ideal gas from volume V_{1} to V_{2} at temperature TK.
25 Heat supplied to a carnot engine is 453.6 Kcal . How much useful work can be done by the engine which works between $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$.?
26 Explain Stirling's approximation.
27 Derive the relation between Partition function and Entropy.
28 State and explain Le-Chatelier's principle.
IV. Answer any two questions. Each question carries a weightage 4 :

29 What are critical constants ? How are they related to van der Waals' constant? Write the Amagat's method of determining critical volume of a gas.
30 Derive the Clausius-Clapeyron equation for liquid-vapour equilibrium. Mention any two applications of the equation.
31 (a) Show that the entropy 'S' and probability 'W' are related as $\mathrm{S}=\mathrm{Kln} \mathrm{W}$.
(b) Starting from Van't Hoff reaction isotherm, derive the integrated form of Van't Hoff equation.

