(Pages: 3)
Name
Reg. No.

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2015
 (CUCBCSS--UG)
 Complementary Course
 MAT 3C 03-MATHEMATICS

Time : Three Hours
Maximum : 80 Marks

Part A (Objective Type Questions)

Answer all twelve questions.

1. Write the general form of Bernoulli's differential equation.
2. Find the solution of the differential equation $y^{\prime}=$
3. What is the order of the differential equation $\mathrm{y}^{\prime \prime}-\left(\mathrm{y}^{\prime}\right)^{3}+4=\mathbf{0}$?
4. State Cayley Hamilton theorem.
5. What is the rank of a $(\mathrm{n} \times \mathrm{n})$ non-singular matrix ?
6. Write the normal form of the matrix : $\left|\begin{array}{ccc}\mathbf{1} & 1 & 0 \\ 0 & \mathbf{0} & \mathbf{1}\end{array}\right|$
7. Write the parametric equation of the curve $\frac{x^{2}}{4}+\frac{v^{2}}{3}=\mathbf{1}$.
8. Define Irrotational vector.
9. Find curl v , where $\mathrm{v}=[2 \mathrm{y}, 5 \mathrm{x}, 0]$.
10. Find the tangent to the curve $r(t)=t i+t^{3} j$ at $(1,1,0)$.
11. Define scalar potential of a vector.
12. State Gauss's divergence theorem.

Part B (Short Answer Type Questions)

Answer any nine questions.
13. Find the orthogonal trajectories of the family of curves $\mathrm{y}=c e^{x}$.
14. Write the condition for the differential equation $\mathrm{M} d x \quad \mathrm{~N} d y=0$ become exact. What is the form of its solution?
15. Find the integrating factor of the linear differential equation $y^{\prime}-\mathbf{y}=e^{2 x}$
16. Find characteristic roots of the matrix: $\left|\begin{array}{rrr}-1 & 2 & 0 \\ \mathrm{O} & 2 & 3 \\ \mathrm{O} & \mathrm{O} & 1\end{array}\right|$
17. Write the elementary transformations in a matrix.
18. Find the comment of vector $a=[4,2,0]$ in the direction of $\boldsymbol{b}=[\mathbf{1}, \mathbf{- 1}, 2]$.
19. Find the directional derivative off $=x y z$ at the point $\mathbf{P}(\mathbf{- 1}, \mathbf{1}, 3)$ in the direction of $i-2 \mathrm{j}+2 \mathrm{k}$.
20. Find the unit normal to the level surface $z^{2}=4\left(x^{2}+y^{2}\right)$ at the point $P(1,0,2)$.
21. Find div v , where $\mathrm{v}=x y z i+3 z x j+z k$.
22. Define Jacobian.
23. Find value of X if $\mathrm{a}=[4,2, \mathrm{X}]$ and $\boldsymbol{b}=[2,-3,1]$ are orthogonal.
24. Write the formula for finding the area of a plane region as a line integral over the boundary.

$$
(9 \times 2=18 \text { marks })
$$

Part C (Short Essay Type Questions)

Answer any six questions.
25. Solve the intial value problem $y^{\prime}+y \tan x=\sin 2 x, y(0)=1$.
26. Solve $x y^{\prime}=y+3 \mathrm{x}^{4} \cos ^{\mathrm{t}}$

$$
(x)
$$

27. Find the eigenvalues and eigenvector corresponding to any one eigenvalue of the $20-2$ matrix : $A=040$ -205
28. Use Cayley Hamilton theorem to find A^{-1} and A^{4}, where $A=\left|\begin{array}{ll}1 & 2 \\ \mathbf{1} & \mathbf{1}\end{array}\right|$
29. Find the tagential and normal componets of acceleration of an object moving along the curve $r(t)=e^{\prime} i+e^{\quad} j$.
30. Find tangent to the ellipse ${ }_{4}^{1}\left(\mathbb{Z}+y^{2}\right)$ at the point $P^{\prime} \quad \mathbf{~}$.
31. Find the area of the cardioid $r=a(1-\cos 0), 002 \pi$.
32. Evaluate the double integral $\iint y^{-} d x d y$ where R is the region bounded by the unit circle in the first quadrant.
33. Verify Green's theorem in the plane for the vector $\left.\mathrm{F}=\left(\mathrm{y}^{2}-7 \mathrm{y}\right) i+2 x y+2 \mathrm{x}\right) j$ and the region bounded by the $x^{2}+y^{2}=1$.

$$
(6 \times 5=30 \text { marks })
$$

Part D (Essay Type Questions)

Answer any two questions.
34. Test for consistency and solve the following system of equation.
$x+y+z+3=0$
$3 x+26 y+2 z=9$
(a) $3 x+y-2 z+2=0$
$2 x+4 y+7 z-13=0$.
(b) $\begin{aligned} 5 x+3 y+7 z & =4 \\ 7 x+2 y+10 z & =5 .\end{aligned}$
35. (a) Solve the differential equation :

$$
2 \sin \left(y^{2}\right) d x+x y \cos \left(y^{2}\right) d y=0, y(2)=\overline{2} .
$$

(b) Prove that $\operatorname{Curl}($ gradf $)=0$.
36. Verify Stokes's theorem for $\mathrm{F}=[y, z, x]$ over the surface of the paraboloid $z=1-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right), z \geq \mathbf{0}$. ($2 \times 10=20$ marks $)$

