THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2010 (CCSS)

Mathematics (Complementary Course)
MM 3C 03-MATHEMATICS
Time : Three Hours
Maximum Weightage : 30

I. Objective Type questions

(Answer all questions, weightage $12 \mathrm{X}=3$)

1. The order of the differential equation $\left(y^{\prime}\right)^{2}+y=x^{2}-2$ is ...
2. The variable separable equation $g(y) d y=f(x) d x$ has the general solution ...
3. The necessary and sufficient condition for a differential equation $M(x, y) d x+N(x, y) d y=\mathbf{0}$ is exact is that ...
4. The rank of a zero matrix is ..
5. The system of linear equations $\mathrm{AX}=3$ is consistent if and only if ... have the same rank
6. The roots of the equation I $\mathrm{A}-\mathrm{XII}=0$ is called ...
7. The work done by a constant force p in making a displacement d is given by .
8. If the scalar triple product of three non zero vectors is zero then those vectors are
9. The gradient of a scalar point function is a vector whose direction is ...
10. $\operatorname{div}($ curl $v)=$
11. The line integral $\int_{G} \mathbf{F}(\mathrm{r})$. dr is path independent if and only if ... is a zero vector.
12. By Gauss divergence theorem, $\iiint_{T} \operatorname{div} F d V=\ldots$ where T is a region in space

II. Short answer type questions
 (Answer all questions, weightage $9 \times 1=9$)

13. Solve the initial value problem

$$
y^{\prime}+y 0 ; y(0)=3
$$

14. Find the integrating factor of the differential equation $\frac{d y}{d x}+y \log x=$
15. Obtain the row equivalent canonical matrix C of $\left[\begin{array}{lll}1 & 3 & 4 \\ 2 & \mathbf{6} & 8\end{array}\right]$
16. Test for consistency of the c 拄tions:
$2 x+3 y=13$
$5 x-2 y=4$
17. Find the eigen values of $A=\begin{array}{cl}\Gamma-2 & -11 \\ 5 & 4\end{array}$
18. Find the resultant (in components) and its magnitude of $\mathbf{p}=[4,-2,-3], \mathbf{q}=[8,8,1]$, $\mathbf{u}=[-12,-6,2]$
19. A force $p=[3,0,-6]$ acts on a line through a point $[0,-1,4]$. Find the moment \mathbf{m} of \mathbf{p} about the point $[4,6,-1]$
20. Find the directional derivative of $f(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$ at the point $P(2,1,3)$ in the direction of the vector $\boldsymbol{i}-2 \mathrm{k}$
21. Find the curl of the vector $v=y z I+3 z x j+z k$

HI. Short Essay or Paragraph Questions Answer any 5 questions from 7 ($5 \times 2=10$ weightage)

22. Solve the initial value problem: $y^{\prime}+y \tan x=\sin 2 x ; y(0)=1$
23. Find the orthogonal trajectories of $\mathrm{y}=\mathrm{cx}$ where c is arbitrary.
24. Find the rank of the matrix $\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1\end{array}\right|$
25. Determine the eigen vectors of the matrix $\left|\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right|$
26. If $\left.A \left\lvert\, \begin{array}{ll}1 & 2 \\ =-1 & 3\end{array}\right.\right]$, find A^{2}, using Cayley Hamilton theorem
27. Evaluate the integral $\mathrm{I}=\int_{C} 3 x^{2} d x+2 y z d y+y^{-} d z$ from $\mathrm{A}(0,1,2)$ to $\mathrm{B}(\quad \mathbf{- 1}, 7)$
28. Using Gauss Divergence theorem, evaluate $\iint_{S} x^{3} d y d z+x^{-} y d z d x+x^{2} d x d y$ where S is the closed surface consisting of the cylinder $x^{2}+y^{2} \mathbf{a}^{2}(0<z \leqslant b)$ and the circular disks $z=0$ and $z=b\left(x^{2}+y^{2} a^{2}\right)$

IV. Essay Questions

Answer any 2 questions from 7 (2X4 = 8 weightage)

29. Solve: $x+3 y-2 z=0,2 x-y+4 z=0, x 11 y+14 z=0$
30. Using Green's theorem evaluate $\oint_{\mathrm{C}}\left(x y \quad y^{-}\right) d x+x^{2} d y$ where C is bounded by $\mathrm{y}=\mathrm{x}$ and $y=x^{2}$
31. Verify Stoke's theorem for $F=\left[y, z\right.$, and S the paraboloid $z=f(x, y)=1-\left(x^{2}+y^{2}\right), z \quad 0$
