THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2011

(CCSS)
Mathematics-Complementary
MM 3C 03—MATHEMATICS

Time : Three Hours
Maximum Weightage : 30

I. Objective Type Questions.
 Answer all questions.

1. The degree of the differential equation $\left(y^{\prime}\right)^{2}+y=x^{3}-4$ is
2. The variable separable form of the differential equation $9 y y^{\prime}+4 \mathrm{x}=0$ is
3. The necessary and sufficient condition for the differential equation $\mathrm{M}(\mathrm{x}, \mathrm{y}) d x+\mathrm{N}(\mathrm{x}, \mathrm{y}) d y=0$ is exact is that \qquad
4. The order of the largest square sub matrix whose determinant is not zero is called \qquad
5. I A - $\quad \mid=0$ is called the of A .
6. If ${ }_{2}$ is a characteristic root of a non-singular matrix A then $1 / 2$ is the characteristic root of
7. If the inner product of two vectors is zero then the two vectors are
8. The directional derivative of $g, \mathrm{D}_{b} f$, is maximum when \mathbf{b} has the direction of
9. When the curl of a vector point function f is a zero vector then f is called \qquad
10. $\quad \operatorname{curl}(V f)=$
11. The line integral $\int F(r) \cdot d \mathbf{r}$ is path independent if and only if \mathbf{F} is ___ of some function f
12. A domain is called if every elosed eurve can be continuously shrunk to any point D without leaving D.
II. Short Answer Type Questions.

Answer all questions.
13. Solve the initial value proem $\mathrm{y}^{\prime}=-\mathrm{y} / x ; \mathrm{y}(1)=1$.
14. Find the integrating factor of the differential equation $\frac{d y}{d x}+\mathrm{y} \tan \mathrm{x}=\frac{\cdots}{3}$
15. Find the general solution of the differential equation $\mathrm{y} y=4$.
16. Obtain the row equivalent canonical matrix C of $\left.\begin{array}{lll}1 & 2 & -3 \\ 2 & 5 & -4\end{array} \right\rvert\,$
17. Find the augmented matrix of the following system of equations :

$$
\begin{array}{r}
x+2 y-3 z=5 \\
3 x-y=3 \\
4 x+3 y-z=2
\end{array}
$$

18. Find the eigenvalues of $\left|\begin{array}{lll}3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1\end{array}\right|$
19. Find a unit vector perpendicular to the vectors $[2,3,4]$ and $[-2, \mathbf{1}, \mathbf{1}]$.
20. Find the $\operatorname{div}\left[3 \mathrm{x}^{2}, 5 x y^{\wedge}, x y z^{\top}\right]$ at the point $(1,2,3)$.
21. Find the directional derivative off $(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$ at the point $P(2,1,3)$ in the direction of the vector $\mathbf{i}-\mathbf{2 k}$.
III. Short Essay or Paragraph Questions.

Answer any five questions.
22. Solve the following exact equations $\left(\mathrm{x}^{3}+3 x y^{\circ}\right) d x+\left(3 x^{2} y+y^{\sim}\right) d y=\mathbf{0}$.
23. Solve the Bernoulli's equation : $y^{\prime}-A y=-\mathrm{By} \mathbf{A}, \mathbf{B}$ positive.
24. Reduce the matrix A to its normal form.
$A=-\left|\begin{array}{ccccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right|$
25. Prove that the following system of equation is inconsistent.

$$
\begin{array}{r}
x+y+z+3=0 \\
3 x+y-2 z+2=0 \\
2 x+4 y-7 z-7=0
\end{array}
$$

26. Determine the eigenvectors of the matrix $\left|\begin{array}{cccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right|$
27. Find the work done in moving a particle in the force field $\mathrm{F}=3 \mathrm{x}^{2} \mathbf{i}+(2 x z-y) j+z \mathbf{k}$ along the straight line from $(0,0,0)$ to $(2,1,3)$.
28. Evaluate $\int(z \mathbf{i}+x \mathbf{j}+y \mathbf{k}) \cdot \mathbf{n} d \mathrm{~S}$ where S is the quadrant of the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ between the positive parts of the axes.

IV. Essay Questions.

Answer any two questions.
29. Verify the Cayley-Hamilton theorem and compute the inverse of the matrix

$$
A \xlongequal{ }\left|\begin{array}{rrr}
2 & 6 & -2 \\
6 & 1 & -4 \\
-2 & -4 & -3
\end{array}\right|
$$

30. Solve: $x+3 y-2 z=0,2 x-y+4 z=0, x-11 y \quad 14 z=0$.
31. Verify Stoke's theorem for $\mathrm{F}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ i $2 x y j$ taken round the rectangle bounded by the lines $x=\mathrm{a}, x=-\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}$.
