(Pages : 3)
Name
Reg. No. \qquad
THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2012 (CCSS)

Microbiology
MB 3C 11-BIOSTATISTICS I

(As per 2009 Admissions Syllabus)
Maximum : 30 Weightage

Time : Three Hours

Part A

Answer all questions, each question carries weight 'A.

1. The weights of fishes are recorded in grams. Then measurement is in:
(a) Interval scale.
(b) Nominal scale.
(c) Ratio scale.
(d) Ordinal scale.
2. Which of the following is not a statistic ?
(a) Population mean.
(b) Sample mean.
(c) Sample variance.
(d) Sample median.
3. If $\mathbf{2 5}, \mathbf{1 0 0}, \mathbf{1 0}, \mathbf{4 0}$ and 50 are 5 observations then median will be :
(a) 40 .
(b) 50 .
(c) 25.
(d) 45 .
4. If we collect data from every unit of the population then the study is called :
(a) Sample survey.
(b) Pilot survey.
(c) Census survey.
(d) Periodical survey.
5. The mean deviation about mean of the observations 20,35 , and 50 is
(a) 10.
(b) 0 .
(c) 2.5 .
(d) 5 .
6. The variance of the 5 observations $10,10,10,10,10$, will be :
(a) 10 .
(b) 0.
(c) Cannot be obtained.
(d) 1.
7. The set of all possible outcomes of a random experiment is called
8. If $\bar{x}=\mathbf{1 0}$ and S.D. $=\mathbf{2}$ then coefficient of variation is
9. For testing the equality of means of 2 normal populations with common variance we use
\qquad test.
10. If $X \sim N \quad$) then the probability that its values will be between $\mu \pm 2 a$ is approximately —— percentage.
11. The probability of a male birth is 0.5 . When 3 child births take place, the probability that all the three children are girls is \qquad
12. A random variable follows a binomial distribution with parameters $n=10$ and $p=0.5$. Then the
mean of X is
\qquad

Part B

Answer all questions.
 Each question carries 1 weight.

13. State the addition theorem of probability in the case of two events.
14. If A and B are independent events with $P(A)=\frac{1}{6}, r(D)=\frac{1}{2}$, find. P (A B
15. State classical definition of probability.
16. State two merits and one demerit of Median.
17. Distinguish between Accuracy and Precision.
18. State any four properties of normal distribution.
19. Define a simple random sample.
20. Define Poisson distribution.
21. What is a statistic ? Give one example.

Part C

Answer any five questions.
Each question carries weight 2.
22.

The following are the ages of patients admitted to a hospital. Calculate the coefficient of variation.

$$
8,6,2,4,4
$$

23.

Explain the method of drawing a histogram for a frequency table.
24. For the following set of observations obtain the Hormonic Mean

$$
10,20,50,100,200
$$

25. Fit a Posson distribution to the following data :

x	0	1	2	3	4
f	123	59	14	3	1

26. A pair of dice are rolled. Find the probability that the sum of the numbers on the 2 dice is 11 .
27. Describe the various mesures of dispersion.
28. The ammonia concentration in females is normally distributed with a mean of 450 and S.D of 100 . Find the probability that the ammonia concentration of a female selected at random is between 400 and 460.

$$
\text { (5 x } 2=10 \text { weightage) }
$$

Part D

Answer any two questions. Each question carries weight 4.
29. The weights of 9 obese women before and after a 12 -week low calorie diet treatment are given below. Examine whether the treatment is effective in weight reduction.

Before	117	$\mathbf{1 1 1}$	98	$\mathbf{1 0 4}$	$\mathbf{1 0 5}$	$\mathbf{1 0 0}$	$\mathbf{8 2}$	89	78
After	83	85	75	83	82	78	62	69	64

30. Calculate the mean, standard deviation and coefficient of variation given the following data:

Age	$0-20$.	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	5	10	12	7	6

31. Decribe the normal distribution. State its important properties. Indicate its importance. Explain how the parameters can be obtained from a sample.

$$
\text { (2 } \times 4=8 \text { weightage) }
$$

