Name

Reg. No.

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014 (UG-CCSS)

Complementary Course—Microbiology

MB 3C 11—BIOSTATISTICS—I

	MB 3C 11—B	IOSTATISTICS—I
Time: Three Hours		Maximum : 30 Weightage
I. Objective type	e questions. Answer all quest	ions:
	the following terms describe son for some other purpose :	e data originally collected at an earlier time by some
(a) Pri	imary data.	(b) Secondary data.
(c) Ex	perimental data. ———	(d) Field notes.
2 An examp	ole of a continuous type rando	om variable is
(a) Ag	ge of a patient.	
(b) Bi	irth weight of a newborn baby	<i>I</i> •
(c) N	umber of children in a family	
(d) N	one of the above.	
3 A graphic	al representation of cumulati	ve frequencies is called :
(a) O ₈	give.	(b) Frequency polygon.
(c) Hi	stogram.	(d) Frequency graph.
4 "Testing t	the blood of a patient for Diak	petes" is a situation where——— can be used.
(a) On	ly sampling.	(b) Only census.
(c) Bo	th census and sampling.	(d) Neither census nor sampling.
5	is a measure of Central Tend	ency which is not affected by extreme values.
(a) Me	ean.	(b) Median.
(c) G.	M.	(d) H.M.
6 The differ	ence between the largest and	the smallest data values is the :
(a) Va	riance.	(b) Inter-quartile range.
(c) Ra	inge.	(d) Coefficient of variation.
7 Two event	ts A and B that cannot occur	simultaneously are called:
(a) Ind	lependent events.	(b) Exhaustive events.
(c) Mu	itually exclusive events.	(d) None of these.

Turn over

	(a) Poisson.	(b) Binomial.
	(c) Normal.	(d) None of these.
	9 The sum of squares of deviations of o	bservations is minimum when taken from:
	(a) Mean.	(b) Median.
	(c) Mode.	(d) GM.
	10 is used for testing the equal	lity of variances of two normal populations.
	(a) t-test.	(b) x^2 test.
	(c) Normal test.	(d) F-test.
	11 A Normal population is completely sp	ecified if its mean and are known.
	(a) Range.	(b) Variance.
	(c) Curve.	(d) None of these.
	12 The pdf of a distribution is $f(x) = e^{-x}$	2 ^x /x!. Its means is
	(a) 4.	(b) 1.
	(c) 3.	(d) 2.
		$(12 \times \frac{1}{4}) = 3 \text{ weightage}$
II.	Short Answer Type Questions. Answer all	nine questions:
	13 What is meant by ordinal scale of data this type of data?	a? Which are the measures of central tendency used for
	14 Define (i) Class Interval ; (ii) Class M	ark ; (iii) Class Limits.
	15 What do you mean by variability or dispose of variability?	persion of data? Give any two commonly used measures
	16 Define a Random Experiment.	
	17 If A and B are mutually exclusive eve	nts with $P(A) = 0.2$ and $P(B) = 0.5$, find
	(i) P(A n B); (ii) P(A iv B); (iii) P(A^c); (iv) $P(A^c \cap BC)$.
	18 A bag contains 25 balls numbered 1 to that the number on the ball will be a	25. One ball is drawn at random. Find the probability multiple of 5.
	19 Define a Bernoulli distribution. What	is its mean and variance ?
	20 If X is a Poisson variate such that 3P(X = 2) = 2P (X = 1), find (a) P (X = 0); (b) P (X = 3).
		of a Binomial distribution is 3 and variance 4.
		$(9 \times 1 = 9 \text{ weightage})$
III.	Short Essay or Paragraph Questions. Answ	
	22 How do you construct a less than (ii) Quartiles?	ogive ? How is it useful in finding (i) Median ;

8 Among the following, ——— is the only distribution with mean greater than variance.

- $_{23}$ (i) Distinguish between Probability (random) Sampling and Non-probability sampling. Which of these come under the scope of Statistics ?
 - (ii) Give any one type of random sampling.
- 24. Calculate the mean, median and mode for the given data:—

No. of children 0 1 2 3 4 No. of households : 5 7 10 8 5

- 25 (i) What are quartiles? Give the formula for calculating the first and third quartiles for a continuous distribution.
 - (ii) Define Quartile Deviation.
- 26 Two dice are thrown simultaneously. Find the probability that (i) The sum of faces is at least 6; (ii) the sum of faces is either 7 or 9.
- 27 (i) Write down the pdf of a Chi square distribution. What is its mean and variance?
 - (ii) Write down the relation between a Normal Variate and a Chi-squareVariate.
- 28 Define an F distribution. What are its applications in Statistics?

 $(5 \times 2 = 10 \text{ weightage})$

- IV. Essay Questions. Answer any two questions:
 - 29 Calculate (i) Variance ; (ii) S.D. ; (iii) Coefficient of variation for the given data :

Class : O-10 10-20 20-30 30-40 40-50 50-60 Frequency : 8 12 16 20 14 10

- 30 (i) Distinguish between Mutually exclusive and Exhaustive events. Give examples.
 - (ii) What is meant by conditional probability of A given B? What is the condition for independence of two events A and B?
- 31 Fit a Poisson distribution to the given data:

× : 0 1 2 3 4 5 6 7 8
; 56 156 132 92 37 22 4 0

 $(2 \times 4 = 8 \text{ weightage})$