\qquad
Reg. No

THIRD SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2015

(UG-CCSS)
Complementary Course
MM 3C 03-MATHEMATICS

Time : Three Hours
Maximum : 30 Weightage

Section A

Answer all questions.
 Each weightage

1. Show with an example that addition of vectors is commutative.
2. Find the acceleration of a particle with position vector $\vec{r}=[3 t,-3 t, 2 t]$.
3. Find grad f if $f=\mathbf{x}^{2}+\cdots$
4. What is the Cartesian form of the surface $F(u, v)=\left[a u \cos \mathbf{v}\right.$, busin $\left.\mathbf{v}, \mathbf{u}^{2}\right]$?
5. If $\mathbf{F}=$ gradf, then eurl
6. Find the unit vector normal to the surface $\mathrm{x} 2+\cdots+\cdots=\ldots 2$.
7. Verify that $\mathbf{y}=\mathbf{a} \cos \mathbf{x}+b \sin \mathbf{x}$ is a solution of $y^{\prime \prime}+y=0$.
8. Solve $y^{\prime}=k y$.
9. Test for exactness : $\left(\mathrm{x}^{3}+3 x y^{-}\right) d x+\left(3 x^{-} y+y^{3}\right) d y=0$.
10. Define rank of a matrix.
11. Is $\left|\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right|$ singular or non-singular?
12. State Cayley-Hamilton theorem.
($12 \mathrm{x}^{\prime} \mathrm{A}=3$ weightage)

Section B

Answer all questions.
Each weightage 1.
13. Find the angle between $[4,2,3]$ and $[\mathbf{1}, \mathbf{1}, \mathbf{0}]$.
14. Find a parametric representation of the straight line through $(2,3,0)$ and $(5,-1,0)$.
15. Find the length of the catenary $\mathrm{r}(t)=[t, \cosh t, 0]$ from $t=0$ to $t=1$.
16. If $\mathrm{F}=[-y,-x y]$ and C is the pqrtion of $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ in the first quadrant, evaluate $\int \overrightarrow{\mathrm{F}}$ o $d \vec{r}$.
17. Use Green's Theorem to evaluate the area enclosed by the ellipse $u^{2}+v^{2} b^{2}=1$.
18. Solve the Initial Yalue Problem: $\left[(\mathrm{x}+1) \mathrm{e}^{\mathrm{x}}-\quad d x=x e \quad d y, y(1)=0\right.$.
19. Find an Integrating factor for $2 \sin \left(\mathrm{y}^{2}\right) d x+x y \cos \left(\mathrm{y}^{2}\right) d y=0$.
(9 x $1=9$ weightage)

Section C

Answer any five questions.
Each weightage 2.
22. (i) Find the potential function of [$2 x, 4 y, 8 z$].
(ii) Test whether $\vec{v}=[y,-x, 0]$ is irrotational.
23. Test for path independence and evaluate if independent the integral from $(0,0,0)$ to $(a, b, c): 2 x y^{-}$ $d x+2 x^{-} y d y+d z$.
24. Evaluate $\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}}$ on d A using Gauss Divergence Theorem : $\quad=\left[\mathrm{x}^{2}, 0, z\right], \mathrm{S}$ is the box $|x| \leq 1,|y| \leq 3,|z| \leq 2$.
25. Solve $x y^{\prime}=2 y+x^{3} e^{x}$.
26. Solve using the transformation $\mathrm{y}=u x: x y^{\prime}=$
27. Find the rank by reducing to normal form : $\mathbf{A}=\left\lvert\, \begin{array}{cccc}\mathbf{0} & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right.$
28. Find the inverse using Cayley-Hamilton Theorem $A=\left\lvert\, \begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3\end{array}\right.$

Section D

Answer any two questions.
Each weightage 4.
29. State Stokes' Theorem and verify it for $\overrightarrow{\mathrm{F}}=[y, z, x]$, S being the paraboloid $z=1-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right), z \geq 0$.
30. (i) Solve $y^{\prime}+{ }_{3}={ }_{3}^{\mathbf{1}}(1-2 x) y^{4}$.
(ii) Find the Orthogonal Trajectories of $y=c x^{3 / 2}$.
31. Find the eigen values and eigen vectors of the matrix $A=\left|\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right|$

