D 9861	(P	ages 3	3)	Name	
				Reg. No	
THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2010					
		CCSS)			
Chemistry—Core Course					
CH3 B05—PHYSICAL CHEMISTRY—I					
Time: Three Hours				Maximum Weightage: 30	
I. Answer all the questions. Each question carries a weightage of ½. This section contains multiple choice, fill in the blank and one word answer questions:					
1 The average distance between successive collisions between gas molecules is called.					
2 The velocity possessed by largest number of molecules in a gas is ———					
3 Give the SI unit of molar refraction.					
4 Name the apparatus used to determine the surface tension of a liquid.					
5 If the two systems are at thermal equilibrium, they will have same :					
(a) temperature.		(b)]	(b) pressure.		
(c) volume.		(d) r	(d) number of moles.		
6 A process which occurs infinitesimally slowly and which is virtually at equilibrium at every stage of the process is a :					
(a) spontaneous process.		(b) i	(b) isothermal process.		
(c) reversible process.		(d) i	(d) isochoric process.		
7 The temperature above which a gas is heated up when subjected to Joule-Thomson expansion is called					
8 Which of the following is the criterion for equilibrium?					
(a)	$AS_{T}, \mathbf{p} = 0.$	(b)	$\Delta S_{P,v} = 0.$		
(c)	$\Delta S_{T,V} = a$	(d) -	AS,		
9 A collection of a very large number of assemblies which are independent of each other but					

(b) Boson.

(d) Maxwellon.

macroscopically identical is called _____

10 An electron is an example of:

(a) Boltzmannon.

(c) Fermion.

Turn over

11 The equilibrium constant of a reaction increases with:

- (a) increase in temperature if ΔH is positive.
- (b) decreasae in temperature if ΔH is positive.
- (c) cannot be predicted.
- (d) can be predicted only with more data.
- 12 For the equilibrium,

$$Ca CO_3 (S) \qquad CaO(s) + CO_2 (g),$$

the equilibrium constant K_P is equal to _____

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

- II. Answer all the questions. Each carries a weightage of 1:
 - 13 Account for the influence of pressure on the melting point of ice using the Le Chatlier principle.
 - 14 What is Stirling's approximation?
 - 15 Classify the following properties into intensive and extensive:

Pressure, Volume, Enthalpy, Molar Heat capacity.

- 16 Calculate the work done when 14 g of nitrogen gas expands isothermally and reversibly from 2 L to 20 L at 27° C assuming ideal behaviour.
- 17 Name two substances for which the entropy is not zero to zero Kelvin. Explain the reason for the same in one of the substances.
- 18 Explain the use of viscosity measurements to determine the molecular mass of a substance.
- 19 What is optical exaltation? Give an example.
- 20 Calculate the average velocity of SO₂ gas at 300 K.
- 21 What is compressibility factor of a gas? How can it be used to study the non-ideal nature of the gas?

 $(9 \times 1 = 9 \text{ weightage})$

- III. Answer any five questions. Each carries a weightage of 2:
 - 22 Derive the van der Waal's equation of state and show how it can expalin the PV-P graphs of real gas.
 - 23 Define parachor. Discuss its use in structure elucidation with suitable examples.
 - 24 Derive thermodynamically the relation between C_p and C_v . Show that it reduces to $C_p C_v = R$ for an ideal gas.
 - 25 The vapour pressure of ethanol at 40°C is 135 torr and at 70°C is 542 torr. Calculate the molar heat of vaporisation of ethanol.

- 26 Discuss the criteria of reversible and spontaneous processes.
- 27 Calculate the rotational partition function of hydrogen at 400 K if its moment of inertia is $4.6 \times 100^{-6} \text{ kg m}^2$.
- 28 The equilibrium constant K for the dissociation of hydrogen iodide,

$$\mathrm{HI}(g) \Longrightarrow {}^{-1\!\!11\{2\,(\mathcal{Q})} \qquad {}^{12}\,(\mathcal{Q}).$$

is 0.134. Calculate the amount of HI remaining at equilibrium when started with 12.8g of HI. (5 \times 2 = 10 weightage)

- IV. Answer any two questions. Each question carries a weightage of 4:
 - 29 (a) Derive the van't Hoff reaction isotherm. How can it be used to predict the feasibility of a reaction.
 - (b) Obtain the relation; (i) between partition function and energy; and (ii) between partition function and pressure.
 - 30 Discuss the Carnot cycle and derive the expression for the efficiency of a reversible engine. State the Carnot theorem.
 - 31 (a) Explain the use of limiting density method to determine the molecular mass of a gas. What is the advantage of the method?
 - (b) Calculate the coefficient of viscosity of hydrogen gas at 273 K given that its density is $8.9 \times 10^{-2} \text{ kg m}^{-2}$ and mean free path is $1.78 \times 10^{-7} \text{ m}$.

 $(2 \times 4 = 8 \text{ weightage})$