\qquad
\qquad

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2010

 (CCSS)Chemistry-Core Course
CH3 B05-PHYSICAL CHEMISTRY-I
Time : Three Hours
Maximum Weightage : 30
I. Answer all the questions. Each question carries a weightage of $1 / 4$. This section contains multiple choice, fill in the blank and one word answer questions :
1 The average distance between successive collisions between gas molecules is called.
2 The velocity possessed by largest number of molecules in agas is \qquad
3 Give the SI unit of molar refraction.
4 Name the apparatus used to determine the surface tension of a liquid.
5 If the two systems are at thermal equilibrium, they will have same :
(a) temperature.
(b) pressure.
(c) volume.
(d) number of moles.

6 A process which occurs infinitesimally slowly and which is virtually at equilibrium at every stage of the process is a :
(a) spontaneous process.
(b) isothermal process.
(c) reversible process.
(d) isochoric process.

7 The temperature above which a gas is heated up when subjected to Joule-Thomson expansion is called
8 Which of the following is the criterion for equilibrium?
(a) $\quad \mathrm{AS}_{\mathrm{T}}, \mathrm{P}=0$.
(b) $\Delta S_{P, v}=0$.
(c) $\Delta \mathrm{S}_{\mathrm{T}, \mathrm{V}}=\mathrm{a}$
(d) $\mathbf{A S}$, $_{v}$

9 A collection of a very large number of assemblies which are independent of each other but macroscopically identical is called \qquad
10 An electron is an example of :
(a) Boltzmannon.
(b) Boson.
(c) Fermion.
(d) Maxwellon.

11 The equilibrium constant of a reaction increases with :
(a) increase in temperature if $\Delta \mathrm{H}$ is positive.
(b) decreasae in temperature if $\Delta \mathrm{H}$ is positive.
(c) cannot be predicted.
(d) can be predicted only with more data.

12 For the equilibrium,
$\mathrm{CaCO} \mathrm{CO}_{3}(\mathrm{~S}) \quad \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$,
the equilibrium constant K_{P} is equal to \qquad (12 x $1 / 4=3$ weightage)
II. Answer all the questions. Each carries a weightage of 1 :

13 Account for the influence of pressure on the melting point of ice using the Le Chatlier principle.
14 What is Stirling's approximation ?
15 Classify the following properties into intensive and extensive :
Pressure, Volume, Enthalpy, Molar Heat capacity.
16 Calculate the work done when 14 g of nitrogen gas expands isothermally and reversibly from 2 L to 20 L at $27^{\circ} \mathrm{C}$ assuming ideal behaviour.
17 Name two substances for which the entropy is not zero to zero Kelvin. Explain the reason for the same in one of the substances.

18 Explain the use of viscosity measurements to determine the molecular mass of a substance.
19 What is optical exaltation ? Give an example.
20 Calculate the average velocity of SO_{2} gas at 300 K .
21 What is compressibility factor of a gas? How can it be used to study the non-ideal nature of the gas?

$$
(9 \times 1=9 \text { weightage })
$$

III. Answer any five questions. Each carries a weightage of 2 :

22 Derive the van der Waal's equation of state and show how it can expalin the PV-P graphs of real gas.
23 Define parachor. Discuss its use in structure elucidation with suitable examples.
24 Derive thermodynamically the relation between C_{p} and C_{v}. Show that it reduces to $C_{p}-C_{v}=$ \mathbf{R} for an ideal gas.

25 The vapour pressure of ethanol at $40^{\circ} \mathrm{C}$ is 135 torr and at $70^{\circ} \mathrm{C}$ is 542 torr. Calculate the molar heat of vaporisation of ethanol.

26 Discuss the criteria of reversible and spontaneous processes.
27 Calculate the rotational partition function of hydrogen at 400 K if its moment of inertia is $4.6 \times 100{ }^{-} \mathrm{kg} \mathrm{m}{ }^{2}$.
28 The equilibrium constant K_{\checkmark} for the dissociation of hydrogen iodide,

$$
\mathrm{HI}(g)=ص^{1 \mathrm{~min}(s)} \quad 12 \cos .
$$

is 0.134 . Calculate the amount of HI remaining at equilibrium when started with 12.8 g of HI . ($5 \times 2=10$ weightage)
IV. Answer any two questions. Each question carries a weightage of 4 :

29 (a) Derive the van't Hoff reaction isotherm. How can it be used to predict the feasibility of a reaction.
(b) Obtain the relation; (i) between partition function and energy ; and (ii) between partition function and pressure.
30 Discuss the Carnot cycle and derive the expression for the efficiency of a reversible engine. State the Carnot theorem.
31 (a) Explain the use of limiting density method to determine the molecular mass of a gas. What is the advantage of the method?
(b) Calculate the coefficient of viscosity of hydrogen gas at 273 K given that its density is $8.9 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{-}$and mean free path is $1.78 \times 10^{-7} \mathrm{~m}$.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

