FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2012

(CCSS)

Microbiology (Complementary)

MB 4C 15-BIOSTATISTICS
(As per 2009 Admission Syllabus)
Maximum : 30 Weightage
Time : Three Hours

Part A

Answer all questions. Each carries a weight of $1 / 4$.

1. Significance level of a test stands for:

(a) P [Reject $\mathrm{H}_{0} \mathrm{I} \mathrm{H}_{0}$ is False]. (b) P [Reject H_{o} I H_{o} is True].
(c) P [Accept $\mathrm{H}_{0} I \mathrm{H}_{v}$ is True].
(d) P [Accept $\mathrm{Ho}_{0} \mathrm{H}_{\mathrm{O}}$ is False].
2. The performance of a test is judged by considering :
(a) Only significance level.
(b) Only power.
(c)
Both significance level and power.
(d) None of these.
3. The square of the correlation coefficient is called:
(a) Coefficient of determination.
(b) Coefficient of association.
(c) Yule's coefficient.
(d) Spearman's coefficient.
4. For the Chi-square test to be valid we should have :
(a) Sample size small and expected frequency of every cell >5.
(b) Sample size large and expected frequency of every cell <5.
(c) Sample size large and expected frequency of every cell >5.
5. The value of correlation coefficient r satisfies
(a) $1 \mathrm{r}<1$.
(b) $\mathrm{O}<r<1$.
(c) $\mathrm{O} \quad \mathbf{r} \quad 1$.

$$
\text { (d) }--1 \quad r \quad \mathbb{1}
$$

Rank correlation coefficient equals 1 . Then it implies :
(a) Rankings are not similar.
(b) Ranking is not proper.
(c) Some ranks are given to both scores.
(d) None of these.
7. The variable affected by treatment is called
8. If there are 5 treatments in an $R B D$ design then the degrees of freedom f squares in the ANOVA table will be design then the degrees of freedom $\mathrm{f}_{\text {or treatment sum of }}$
9. To test the significance of a correlation coefficient we use \qquad test.
10. If the correlation coefficient $r=+1$ then the regression lines will be
11. In the Chi-square test for testing association of attributes attributes are
the null hypothesis states that the two

- 12. The principle of least squares minimizes
sum of squares.
$\left(12 x^{1 / 4}=3\right.$ weightage)

Part .B

Answer all questions. Each one carries a weight of 1 .
Define power of a test.
14. What is the difference between type I and type $\mathbf{I I}$ errors?
15. Give n example of a 3×2 contingency table.
16. Define analysis of variance.
17. Explain the term local control.
18. Give the meanings of experimental unit and block.
19. Explain why there are .two regression lines
20. State the 95% confidence interval for the
parameter β in the model $y=a+\beta x \quad u$.
21
What is meant by partial correlation ?
(9 $\times 1=9$ weightage)

Part C

Answer any five questions.
Each carries a weight of 2 .
Find the rank correlation coefficient :

$$
\begin{array}{rrrrr}
: & 1 & 2 & 3 & 4 \\
y: & 2 & 1 & 3 & 5
\end{array} 4
$$

23. Bring out the basic principles of experimentation.
24. Give the layout of an CRD appropriate. design •and indicate a real life situation where such a design is
25. In the case of 3 variables X_{1}, X_{2}, X_{3} r12 o. $7, r_{13}=0.5, r_{23}=0.6$. Find $r_{12.3}$ and $R_{1.23}$. 26.

Describe a statistical test for testing the significance of a regression coefficient.
27. Find out the Karl Pearson's correlation coefficient from the following information

$$
\begin{aligned}
& \text { n } 1 O, E x=120, \sum y=90 \\
& E x^{2}=1580, \sum y^{2}=1400, E x y=1380
\end{aligned}
$$

28. Complete the ANOVA compared.

Source
S.S. df M.S. F

Treatment 154.94
Error
Total 200.539
($5 x^{\prime} 2=10$ weightage)

Part D

Answer any two questions.
Each one carries a weight of 4 .
29. The strength of cotton in a CRD experiment is given below. Analyse the data and give your comments.

Treatment Observations

A $\quad 7.62,8.0,7.93$
B $\quad 8.14,8.15,7.87$
C $\quad 7.76,7.73,7.74$
D $\quad 7.17,7.57,7.80$
Calculate the correlation coefficient and the two regression lines from the following data :
30.

Glucose level
889096118124130140
Blood pressure 134140141146148168145
In a sample of size 160 the observed distribution of offsprings in the 4 phenotype classes are as 31. follows:
Class $\quad A B \quad A b \quad a B \quad a b$
Frequency
$100 \quad 25 \quad 287$

Test whether the frequencies are in the ratio $9: 3: 3: 1$.

