FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2016

(CUCBCSS UG)

Complementary Course
MAT 4C 04—MATHEMATICS

Maximum : 80 Marks
Time : Three Hours

Part A

Objective type. Answer all twelve questions.
hat do you mean by a non linear differential equation?
Write the solution for an homogeneous differential equation with $2 \pm 3 \mathrm{i}$ as a double root for its
2.
auxiliary equation.
State the Existence and Uniqueness theorem for initial value problem.
3.

What is the Shifting property of Laplace transform?
5. Find L $\left.\frac{1}{(s+1)^{2}}\right)$.
6. What is $\mathrm{L}\left(t^{\cdots}\right)$?
7. How do you define a sawtooth wave function?

Define and give an example of an odd function.
9. Write the Euler's formula for a fourier series of a periodic function.
10. Write the formula for Runge Kutta method.
11. Does the inital value problem $x y^{\prime}=4 y, y(0)=\mathbf{1}$ has solution? Give reason.
12.

Give a formula for an error for Simpson's rule.

Part B

Short answer type.
Answer any nine questions.
13. Find the particular integral for $y^{\prime}+4 y=8 x^{2}$.
14.
15. Find $\mathrm{W}[$

Turn over
16. If $\mathrm{L}^{-1}(f(s))=\mathrm{F}(t)$ then show that $\mathrm{L}^{\prime}(f(s-a))=\mathrm{F}(t)$.
17. Show that the Laplace transform is a linear operation.
18. Find L $\left(\sin ^{-} t\right)$.
19. Show that the function $f(x)=$ constant is a periodic function of period
20. Find the fourier series of $f(x)=-\quad$ - $\quad p$ for every positive p.
21. Show that $\mathrm{u}=\cos 4 \mathrm{t} \sin 2 x$ is a solution of the wave equation.
22. Apply Picard's iteration upto 4 steps to solve $y^{\prime}=y$ and $y(0)=1$.
23. Show that the initial value problem

24. What do you mean by Lipschitz condition?

Part C

Short essay.

Answer any six questions.
25. Solve $x y^{\prime \prime}+7 x y^{\prime}+13 y=0$.
26. Verify $y_{p}=2 x^{2}-6 x+7$ is a solution for $y+3 y^{\prime}+2 y=4 x^{2}$ and find a general solution.
27. Find the Laplace transform of $f(t)=\begin{gathered}0 . t \\ 5, t>4\end{gathered}$
28. Find

$$
\left.\begin{array}{c}
3 s+16 \\
s^{3}-s-6
\end{array}\right)
$$

29. Solve $u=2 x y u$.
30. Find the cosine series off $(x)=x, \mathbf{0}<\boldsymbol{x}<\mathbf{L}$.
31. Solve the integral equation $y(t)=t+\quad y(\tau) \sin (t-d \tau$.
32. Using Simpson's rule evaluate the integral $\int_{1} x d x$ with $n=4$ and hence find an upper bound for the error incurred.
33. Apply improved Euler method in 3 steps to occurred. solve $y^{\prime}=y, y(0)=1$ with $h=\mathbf{0 . 1}$. Also find the error

Part D

Answer any two questions.
34. (a) Solve $x y^{\prime \prime}-4 x y^{\prime}+6 y=21 x$.
(b) Solve the initial value problem $\left(D^{2}+4\right) y=-12 \sin 2 x, y(0)=1.8, y^{\prime}(0)=5$.
35. Solve the integral equation $y(t)=t+\int_{0}^{t} y(\tau) \sin (t-t) c h$.
36. Find the fourier series of $f(x)=\left|\begin{array}{rc}-\frac{\pi}{2}<x<\frac{i t}{2} \\ \pi^{-} & \frac{\pi}{2}<x<\frac{3 \pi}{2}\end{array}\right|$

