\qquad

FOURTH SEMESTER B.Sc. (MICROBIOLOGY) DEGREE

 EXAMINATION, MAY 2011(CCSS)
Biostatistics (Complementary)

MB 4C 15-BIOSTATISTICS ${ }^{\text {T }}$
(As per 2009 Admission Syllabus)
Maximum : 30 Weightage
Time : Three Hours

Part A

Answer all questions.
Each carries a weight of 'A.

1. The power of the test is:
(a) P [Reject $\mathrm{H}_{U} \mid \mathrm{H}_{U}$ is true].
(b) P [Reject $\mathrm{H}_{U} \mid \mathrm{H}_{\mathrm{A}}$ is true].
(c) P [Accept $\mathrm{H}_{U} \mid \mathrm{H}_{U}$ is true].
(d) P [Accept Ho $\mid \mathrm{H}_{\mathrm{A}}$ is true].
2. The performance of a statistical test depends on :
(a) Only significance level.
(b) Only the power of the test.
(c) Both significance level and power. (d) None of these.
3. For the validity of Chi-square test which of the following must be true
sample size must be small and expected frequency of every all >5.
(a) sample size must be large and expected frequency of every cell >5.
(b)
(c) sample size must be large and expected frequency of every cell <5.
d) sample size must be small and expected frequency of every cell <5
(d)
4. The value of correlation coefficient r satisfies :
(a) $r^{2}<1$.
(b) $-1<r<1$.
(c) $O<\mathrm{r}<\mathbf{1}$.
(d) $|r|<1$.
5. Rank correlation coefficient equals $\mathbf{1}$ implies:
(a) Rankings are not similar.
(b) Ranking is not proper.
(c) Same ranks are assigned to both scores.
(d) None of these.
6. Principle of least squares :
(a) Minimizes the sum of squares of the observations.
(b) Maximizes the error sum of squares.
(c) Minimizes the sum of squares of the deviations between estimates.
observed values and there
7. If the regression of x on y is $3 x+2 y-7=0$ then the regression coefficient of x on y is
(a) $\frac{n}{2}$.
(b) $\quad \begin{aligned} & 2 \\ & 3\end{aligned}$.
(c)
(d)
8. The variable affected. by the treatment is called \qquad
9. If there are 4 treatments in an RBD ANOVA table will be then degrees of freedom corresponding to treatments in the
10. In a CRD
experiment the error sum of squares can be obtained by subtracting squares from the total sum of squares.
sum of
11. To test the significance of a correlation coefficient we use \qquad
12.

In the Chi-square test for testing association of 2 attributes the null hypothesis is that the two
13. Define significance level of a test.
4. Distinguish between Type I and Type II errors.
15. What is a contingency table ?
16. Define Analysis of variance.
17. What is an experimental unit ?
18. The Rank correlation coefficient of 6 pairs of observations differences of ranks.
is 0.2 . Find the sum of squares of
19. Explain why there are 2 regression lines.
20. Give the concept of partial correlation.
21. What is meant by interaction ?

Part C

Answer any five questions.
Each carries a weight of ${ }^{2}$.
22. Find the rank correlation coefficient:

23. What is Randomization and Replication?
24. Give the layout of an RBD design. Describe the ANOVA table.
25. For variables $\quad \mathrm{x}_{2}, x_{3}$ based on 20 sets of values $\mathrm{n}_{12}=0.73, \mathrm{r}_{13}=0.68$ and $\mathrm{r}_{23}=0.59$. Find $r_{12.3}$ and $\mathrm{R}_{1.23}$
26. Explain the statistical test for testing the significance of a regression coefficient.
27. Find out the

$$
\mathrm{x}=102, \sum \mathrm{y}=96, \sum \mathrm{x}^{2}=1368, \sum \mathrm{y}^{2}=1,500, \sum x y=1366, \mathrm{n}=8
$$

28. Consider the following ANOVA table :-

Source	SS	d.f.	MS	\boldsymbol{F}
Treatments	231.5.	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$
	9.7	$\mathbf{2 . 8} .8$		
Blocks	98.5	7	14.07	
Error	573.8	$\mathbf{1 4}$	$\mathbf{4 0 . 9 8}$	

(a) What design was employed?
(b) How many treatments were compared?
(c) How many observations were analysed?

At 0.05 level of significance can one conclude that the treatments have different effects
(d) Why?

Answer any two questions.
Each carries a weight of 4.
29. The following data shows the yield of 3 varieties of wheat in an and give comments :

RBD experiment-Analyse the data Block 1 Block 2 Block 3 Block 4

Variety A	8	10	6	8
Variety B	3	4	5	6
Variety C	7	8	6	7

30.

From the following data find the correlation coefficient and the two regression lines

x	2	3	4	5	6
y	3	5	4	8	9

31. The following table gives the observed frequencies of plants in an whether the frequencies are in the. ratio $1: 3: 8: 4$.

F 2 population of chillies. Test Class

Frequency
Purple deep Purple Medium Purple Light Purple green
Frequency ...
203
563
269
(2 $\times 4=8$ weightage)

