C 62100	(Pa	ages 3)	Name			
			Reg. No			
POUD/	UL GEMEOMED D.G. DI		10N MAY 0014			
FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2014						
(UG—CCSS)						
		Course—Microbiology				
	MB 4C 15—B	IOSTATISTICS—II				
Time: Three Hour	s		Maximum: 30 Weightage			
A. Answer all	twelve questions. Each question	on carries ¼ weightage :				
	correct answer:					
1 A statement or assertion about a parameter or the form of distribution is called:						
(a) 1	Estimate.	(b) Hypothesis.				
(c)	Test.	(d) None of the above	•			
2 Accepti	ng a false null hypothesis is o	alled				
(a) '	Гуре I error.	(b) Power of a test.				
(c) Type II error.		(d) Significance level				
3 Level o	f significance is the probabilit	y of:				
(a)	Type I error.	(b) Critical region.				
(c)	Type II error.	(d) None of the above	2.			
4 ANOVA	A tests the hypothesis that:					
(a)	All population totals are equa	al.				
(b)	All population means are equ	al.				
(c)	All population variances are	equal.				
(d)	None of the above.					
5 The conditions for validity of a Chi square test is:						
(a)	(a) All sample observations are independent.					
(b)	(b) Theoretical frequencies should be 5.					
(c)	Total frequency should be la	rge.				
(d)	All of the above.					

(b) Is never linear.

(d) None of the above.

6 Regression between two variables:

(a) Is always linear.

(c) May be linear.

Turn over

,	7 In regression analysis the variable wh	ose value is to be predicted is known as :
	(a) Dependent variable.	(b) Regression variable.
	(c) Independent variable.———	(d) None of the abov e.
8	The correlation coefficient used when measurement is:	n variables considered are not capable of qualitative
	(a) Simple correlation.	(b) Multiple correlation.
	(c) Rank correlation.	(d) None of the above.
Fi	ll in the blanks :	
Ģ	A hypothesis that specifies the distrib	ution completely is known as
10	The condition for the Regression line	es to be parallel is that the correlation coefficient is
11	The basic assumption of ANOVA is th	at the error term follows the distribution.
12	If two variables X and Y are such the coefficient between X and Y will be	at as X increases Y decreases, then the correlation
		$(12 \times \frac{1}{4} = 3 \text{ weightage})$
B. Sho	rt Answer Type Questions. Answer <i>all</i>	nine questions. Each carries weightage 1:
13	Distinguish between Simple and Comp	posite hypotheses.
14	What are the two errors in testing?	
15	Define Critical Region.	
16	If the probabilities of Type I and Type II the significance level and power of the	errors in testing are 0.04 and 0.08 respectively, find test.
17	Explain the statistic in testing "indepe	ndence of attributes".
	Write the equations to the two regressi Define Partial correlation.	on lines. What are the regression coefficients ?
20	Describe the test procedure for testing	the significance of regression.
21	If $2X + 3Y = 6$ and $5X - 4Y = 8$ are the (a) Value of Y when $X = 5$ and (b) Value	regression lines X on Y and Y on X respectively, find e of X when $Y = 2$.
		$(9 \times 1 = 9 \text{ weightage})$
C. Ansv	wer any <i>five</i> questions. Each question c	arries a weightage of 2:
22	What do you mean by a contingency tal	ble ?
23	Explain the general testing procedure o	f a statistical hypothesis.
24	Explain the concept of ANOVA. Write technique.	e any three assumptions underlying the ANOVA
25	Define Rank Correlation Coefficient. correlation coefficient? When is it used	What is Spearman's formula for finding the rank?

26 Calculate the correlation coefficients for the given data. Comment on the result:

X:69 70 Y:85 87

27 For the given ANOVA table, identify:

- (a) Whether it is a One Way or Two way classification ANOVA.
- (b) The number of treatments compared.
- (c) Total number of observations in the analysis.
- (d) Test whether HO is accepted or rejected at 5 % level.

Source of Variation	Sum of Squares	d.f.	Mean sum of Squares	F
Treatments	4.07	2	2.01	1.072
Error	18.75	10	1.875	
Total	22.77	12		

28 Explain test of "Goodness of Fit". What are the conditions for the validity of the test? (5 x 2 = 10 weightage)

- D. Answer any two questions. Each question carries a weightage of 4:
 - 29 Find the 95 % confidence interval for the regression coefficient Y on X for the given data:

X : 65 63 67 64 68 62 70 66 68 67 69 71
Y : 68 66 68 65 69 66 68 65 71 67 68 70

30 A farmer applies 3 types of fertilizers on 4 separate plots. The figure on yield per acre are tabulated as follows. Analyse the data and give comments:

	Yield			
Fertilizer	$\operatorname{Plot} \to A$	В	C	D
Nitrogen	6	4	8	6
Potash	7	6	6	9
Phosphates	8	5	10	9

31 The following figures gives the distribution of digits in numbers chosen at random from a telephone directory:

Digit : O 1 2 3 4 5 6 7 8 9

Frequency: 1026 1107 997 966 1075 933 1107 972 964 853

Test whether the digits may be taken to occur equally frequently in the directory.

 $(2 \times 4 = 8 \text{ weightage})$