EXAMINATION, MAY 2016

(UG-CCSS)
Complementary Course
MM 4C 04-MATHEMATICS

Section A

Answer all questions.
Each question carries a weightage of ${ }^{1} / 4$.

1. Is the equation $y=\sqrt{y}+1$ linear or non-linear ?
2. Is $\mathrm{y}=e^{\mathrm{r}}$ a solution of $y^{\prime \prime}+\mathrm{y}=0$?
3. Solve $y^{\prime \prime}+7 \mathrm{y}=0$.
4.. Find the Laplace Transform of $f(t)=$
4. Define the unit impulse function.
5. Find the inverse Laplace Transform of $\mathrm{F}(s)={ }_{2} 2 s-3$.
6. Find the fundamental period of $\cos 2 \pi x$.
7. Is the following function even or odd or neither $\mathrm{x}^{2} \cos n x$.
8. What is the $\mathbf{2}$ dimensional Laplace equation ?
9. Define the Lipschitz condition.
10. What is an initial value problem ?
11. State Simpson's rule.

Section B

Answer all questions.
Each question carries a weightage of 1.
13. Find the Wronskean of the functions $y_{1}=x^{2}$ and $y_{2}=x^{2} \ln x$.
14. Find the solution of $y^{\prime \prime}+4 y^{\prime}+4 y=0$.
15. Find the Laplace Transform of $f(t)=\cosh 7 t$.
16. Find the inverse Laplace Transform of $F(s)=(s-2)$.
17. Is $\mathrm{u}=\sin c t \sin x$ a•solution of the wave equation (with suitable c) ?
18. Solve $\mathrm{u}_{x},=u_{x}$
19. Solve $u=U$.
20. Show that $f(\mathrm{x}, \mathrm{y})=|\sin y|+x$ satisfies the Lipschitz condition with $\mathrm{m}=1$.
21. Apply Euler's method any compute $y_{1}, \mathrm{y}_{2}, \quad, . \mathrm{Y} 5$ with $h=0.02$, given $\mathrm{y}^{\prime} \quad(\mathrm{Y}$ $y x), y(0)=1$.

Section C

(9×1 $=9$ weightage)

Answer any five questions.
Each question carries a weightage of 2 .
22. Solve $y^{\prime \prime}+=2+2 x+x^{2}, y(0)=8, \mathrm{y}^{\prime}(0)=-1$.
23. Solve $x^{-} y^{\prime \prime}+x y^{\prime}+\mathrm{y}=0$.
24. Find the Laplace Transform of $\mathrm{F}(t)=t o^{-2} t \sin 2 \mathrm{t}$.
25. State the convolution theorem and use it to evaluate the inverse $h(t)$ of $\mathrm{H}(\mathrm{s})=s^{\left(s^{-}+a^{\top}\right)^{-}-1 ~}$
26. Find the Fourier sine series off $(x)=7-x, 0<x<7 r$.
27. Using Runge Kutta Method, find y when $x=0.2$, given $Y^{\prime} \begin{array}{r}Y^{2}-\mathrm{x}^{2} \\ \mathrm{y}^{2}+x^{2}\end{array}, y\left({ }^{n}\right)=1$.
28. Evaluate ${ }_{0}^{\mathbf{J}}+x^{=}$using Trapezoidal rule, taking $h=0.25$.

Section D

($5 \times 2=10$ weightage)
Answer any two questions.
Each question carries a weightage of 4.
29. Solve $y^{\prime \prime}+y=\sec x$.
30. Solve by the method of Laplace Transforms : $y^{\prime \prime}+y=t, y(0)=1, y^{\prime}(0)=-2$.
31. Find the Fourier series expansion off v$)=\frac{\mathrm{x} 2}{2}-\pi<x<\pi$. Hence show that

$$
\begin{array}{llcl}
\frac{1}{4} & \frac{1}{9} & 1 & 2 \\
16 & 6
\end{array}
$$

