C 5162

(Pages : 2)

Name...

Reg. No

FOURTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, MAY 2016

(UG-CCSS)

Complementary Course

MM 4C 04—MATHEMATICS

Time : Three Hours

Maximum : 30 Weightage

Section A

Answer all questions. Each question carries a weightage of $\frac{1}{4}$.

- 1. Is the equation $y = \sqrt{y} + 1$ linear or non-linear?
- 2. Is $y = e^{-t}$ a solution of y'' + y = 0?
- 3. Solve y'' + 7y = 0.
- 4.. Find the Laplace Transform of f(t) =
- 5. Define the unit impulse function.
- 6. Find the inverse Laplace Transform of $F(s) = {}^{2}2s 3$.
- 7. Find the fundamental period of $\cos 2\pi x$.
- 8. Is the following function even or odd or neither $x^2 \cos nx$.
- 9. What is the 2 dimensional Laplace equation ?
- 10. Define the Lipschitz condition.
- 11. What is an initial value problem ?
- 12. State Simpson's rule.

Section **B**

(12 x = 3 weightage)

Answer all questions. Each question carries a weightage of 1.

- 13. Find the Wronskean of the functions $y_1 = x^2$ and $y_2 = x^2 \ln x$.
- 14. Find the solution of y'' + 4y' + 4y = 0.
- 15. Find the Laplace Transform of $f(t) = \cosh 7t$.

Turn over

- 16. Find the inverse Laplace Transform of F(s) = (s-2).
- 17. Is $u = \sin ct \sin x$ a solution of the wave equation (with suitable c)?
- 18. Solve u_x , = u_x
- 19. Solve u = U.
- 20. Show that $f(\mathbf{x}, \mathbf{y}) = |\sin y| + x$ satisfies the Lipschitz condition with m = 1.
- 21. Apply Euler's method any compute y_1, y_2, \dots, y_5 with h = 0.02, given y' (Y $y = y_1, y_0(0) = 1$.

Section C

$(9 \times 1 = 9 \text{ weightage})$

Answer any **five** questions. Each question carries a weightage of 2.

- 22. Solve $y'' + = 2 + 2x + x^2$, y(0) = 8, y'(0) = -1.
- 23. Solve x'y'' + xy' + y = 0.
- 24. Find the Laplace Transform of F (*t*) = $to^{-2}t \sin 2t$.
- 25. State the convolution theorem and use it to evaluate the inverse h(t) of H (s) = s (s + a)^{-1}
- 26. Find the Fourier sine series off (x) = 7 x, 0 < x < 7r.
- 27. Using Runge Kutta Method, find y when x = 0.2, given Y' $\frac{y^2 x^2}{y^2 + x^2}$, $y(^{n}) = 1$.
- 28. Evaluate $\int_{0}^{1} \frac{1}{x} + x^{2}$ using Trapezoidal rule, taking h = 0.25.

2

 $(5 \ge 2 = 10 \text{ weightage})$

Section D

Answer any **two** questions. Each question carries a weightage of **4**.

- 29. Solve $y'' + y = \sec x$.
- 30. Solve by the method of Laplace Transforms : y'' + y = t, y(0) = 1, y'(0) = -2.
- 31. Find the Fourier series expansion off v) = $\frac{x^2}{2} \pi < x < \pi$. Hence show that
 - $\frac{1}{4} \frac{1}{9} \frac{1}{16} \frac{1}{6}$

 $(2 \times 4 = 8 \text{ weightage})$