C 1772
(Pages: 3)
Name
Reg. No
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2016 (UG-CCSS)

Chemistry-Core Course
 CH6 B17-PHYSICAL CHEMISTRY-III

Time : Three Hours

Section A
Answer all questions.
Each question carries $\frac{1}{1}$ weightage.

Fill in the blanks :

1. In a multistep reaction the \qquad step is the rate determining step.
2. For a second order reaction the plot of against time is a straight line.
3. The specific conductance of a strong electrolyte \qquad with dilution
4. The quantum yield of a photochemical reaction is defined as \qquad
Answer in a word or sentence
5. What is a concentration cell?
6. Define transport number.
7. What is an opposing reaction ?
8. State the Lewis concept of acids.
9. Acid is always added during the making up of ferric salts. Why ?
10. Define solubility product.
11. What is overvoltage ?
12. Give the general format of if statement in C programming.

Section B

> Answer all questions.
> Each question carries 1 weightage.
13. Distinguish between order and molecularity.
14. The standard electrode potential of Zn and Ag are -0.80 V and $-\mathbf{- 0 . 7 6} \mathrm{V}$ respectively. Calculate the, standard EMF of the cell $\mathrm{Zn} \mathrm{Zn}{ }^{-} \| \mathrm{Ag} \quad \mathrm{Ag}$.
15. How will you express the units of rate constant for reactions of order zero, 1, 2, and 3 ?
16. What is a salt bridge ?
17. Give the Michaelis-Menton equation for enzyme catalysis.
18. What is chemiluminescence?
19. The molar ionic conductance at infinite dilution of $\mathrm{BaCl}_{2}, \mathrm{NaOH}$ and NaCl are $280 \times 10^{-4}, 248 \times 10^{-4}$, and $126 \times 10^{-4} \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}$ respectively. Calculate the molar conductance at infinite dilution of $\mathrm{Ba}(\mathrm{OH})_{Z}$ solution.
20. Explain buffer action with an example.
21. What are the rules for naming a variable in C language ?

$$
\text { (} 9 \times 1=9 \text { weightage) }
$$

> Section C
> Answer any five questions.
> Each question carries 2 weightage.
22. How is pH measured using an electrochemical cell?
23. Explain the Debye-Huckel theory of electrolytic solutions.
24. What are fuel cells?
25. What are the applications of e.m.f. measurements ?
26. Distinguish between phosphorescence and fluorescence using Jablonski diagram.
27. Calculate the pH of a solution containing 10 g acetic acid and 15 g sodium acetate in $1 \mathrm{~L} . \mathrm{Ka}$ of acetic acid is 1.75×10^{-5}.
28. Describe four applications of solubility product principle.

Section D

Answer any two questions.
Each question carries 4 weightage.
Describe the different methods for the determination of order of a reaction.
29.
30. Describe any four applications of conductance measurements.
31. (a) What are the different types of electrodes?
(b) Derive the Nernst equation for e.m.f. of a cell.

