$\qquad$
$\qquad$

## FIRST SEMESTER B.C.A. DEGREE EXAMINATION, JANUARY 2014

 (UG-CCSS)
## Complementary Course

## CA IC02-DISCRETE MATHEMATICS

## Time : Three Hours

## Part A (Objective Type Questions)

Answer all questions.

1. Find the value of $p(n, \mathbf{0})$ :
(a) 1.
(b) $n$.
(c) 0 .
(d) $n!$.
2. What is the order of the recurrence relation $\mathrm{a},-6 a_{t-1}+8 a_{t-2}+a_{t-3}=\mathbf{0}, \mathbf{r} 23$.
(a) 0 .
(b) 3 .
(c) 2 .
(d) 1 .
3. The equivalent statement of $(\mathbf{P}$
Q) $\mathrm{Q} \rightarrow \mathrm{P})$ is :
(a) $\mathbf{P} \quad \mathrm{Q}$.
(b) $P \cap Q$.
(c) $\mathbf{P}_{v} \mathbf{Q}$.
(d) $\quad \mathbf{P v} \sim \mathbf{Q}$.
4. $\frac{P(n, r)}{c(n, \mathbf{r})}$ :
(a) $n!$.
(b) $r$ !
(c) $(\mathbf{n}-r)$ !
(d) 1 .
5. The negation of $\forall x, p(x)$ is
6. The value of $\left(n^{n!}-3\right)$ ! $\qquad$
7. Value of $c(n, 1)$ is $\qquad$
8. If $p=\mathrm{T}$ and $q=\mathrm{F}$ then $\sim \mathrm{P} \rightarrow \mathrm{Q}$ is $\qquad$
9. Every group is abelian. True or False.
10.. $p(n, r)=p(r, n)$. True or False.
10. Every field is an integral domain. True or False.
11. Does $p(n, r)$ exist for $\mathrm{n}<r$
(12 $\times 1 / 4=3$ weightage $)$

## Part B (Short Answer Questions)

Answer all questions.
13. Evaluate $p(n, r)$ and $c(n, r)$ for $n=6$ and $r=4$.
14. Define skew field.
15. Write the truth table for $(P \vee Q) \rightarrow(P A Q)$.
16. Write the following statement in symbolic form.
"If either Jerry takes calculus or Ken takes sociology, then Lassy will take English".
17. Define zero divisor of a ring.
18. Show that binary operator $*$ defined on $\mathrm{Q}^{+}$by $\mathrm{a} * b=\frac{a b}{}$ is a group.
19. Solve the recurrence relation $\mathrm{a}, .=a_{r-1} \mathrm{a}, .-2$.
20. If $c(\mathrm{n}, 9)=c(\mathrm{n}, 8)$. Find $c(\mathrm{n}, 17)$.
21. Find the number of ways to point 12 offices so that 3 of them will be given, 2 of them pink, 2 of them Yellow and the remaining are white.

$$
\text { (9 x } 1=9 \text { weightage) }
$$

## Part C (Short Essay Questions)

Answer any five questions.
22. Solve the recurrence relation

$$
a_{t} \quad a_{r-1}+6 \quad=\mp r \quad r>2
$$

23. Show that

$$
c(n, r)+c(n, r-1)=c(n+,
$$

$\mid \quad 3$
25. Find the value of $n$ such that $p(n, 5)=42 p(n, 3)$.
26. Show that every finite integral domain is a field.
27. Show that identity element and inverse element are unique in a group.
28. If $\frac{1}{n 1}+\frac{1}{91}=\frac{x}{}$ Find $x$

## Part D (Essay Questions)

Answer any two questions.
29. If $\mathbf{R}$ is a ring with additive identity 0 , then for any $\mathrm{a}, \mathrm{b} \leftarrow \mathrm{G}$. We have
(a) $0 \cdot a=a \cdot 0=0$.
(b) $a(-b)=-(a) b=-(a b)$.
(c) $(-a)(-b)=a b$.
30. Write the truth table for $\sim(p n \mathrm{Q}) \quad p v \sim \mathrm{Q}$. And verify them.
31. Find the sum of $12+2^{2}+\ldots+r^{2}$.

