\qquad
\qquad

FIRST SEMESTER B.C.A. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2014
 (UG-CCSS)
 Complementary Course

CA 1C 02—DISCRETE MATHEMATICS
(2009 Admissions)
Time : Three Hours
Maximum : 30 Weightage

Part A (Objective Type Questions) Answer all twelve questions.
 Each questions carries $1 / 4$ weightage.

1. Give the inverse of the following implication "if it rains today, I will to College tomorrow."
2. Give an example for a tautology.
3. What is the numeric function corresponding to the generating function $\frac{1}{1-3 z}$
4. Give an example for an abelian group.
5. Construct the truth table for the statement $p n p$.
6. Write the power set of \mathbf{A} where $\mathbf{A}=(a, b)$.
7. Write down the Fibonacci sequence of numbers.
8. Given $\mathbf{A}=(2,5,6), B=(3,4,2)$. Evaluate $\mathbf{A}-\mathrm{B}$ and $\mathbf{B}-\mathrm{A}$.

Fill in the blanks :
9. Any one-one mapping of a set S onto S is called a \qquad
10. A commutative ring with identity and without zero divisors is called an
11. The quantifier was used to translate expressions such as "for all" and "every".
12. A group that has a generating set consists of a single element is known as a \qquad
($12 \mathrm{x}=3$ weightage)

Part B (Short Answer Questions)
 Answer all nine questions.
 Each question carries 1 weightage.

13. Prove that if n is an integer and $\mathrm{n}^{3}+5$ is odd, then n is even.
14. How many permutations of the letters ABCDEFGH contain the string ABC.
15. Let $\mathbf{P}(x): x$ is a person
$\mathbf{F}(x, y): x$ is the father of \mathbf{y}
$\mathbf{M}(x, y): x$ is the mother of \mathbf{y}
Write the predicate " x is the father of the mother of y ".
16. What is the truth value of $\forall x p(x)$ where $p(x)$ is the statement ' $\mathrm{x}^{2}<10$ ' and the domain consist of the positive integers not exceeding 4.
17. Let n and r be non-negative integers with $r S \mathrm{n}$. Then prove that $n \mathrm{C}_{r}=$
18. Let Z be the set of integers. The operation * on z is defined by $a * b=a+b+1$ for $a, b E Z$. Find the identity element.
19. In how many ways we can point 12 offices so that 3 of them will be green, 2 of them pink, 2 of them yellow and the remaining ones are white.
20. Find the generating function of $8 C_{6}, 8 C_{1}, 8 C_{8}, 0,0, \ldots$
21. Show that the binary operation $*$ defined on $\left(\mathbf{R},{ }^{*}\right)$ where $x^{*} y=\max (x, y)$ is associative.

$$
\text { (9 x } 1=9 \text { weightage) }
$$

Part C (Short Essay Questions)

Answer any five questions.
Each question carries 2 weightage.
22. Using the method of proof by cases. Prove that the triangle inequality which states that if x and y are real numbers, then $|x|+|y| \geq||x+y|$.
23. Prove that the fourth roots of unity, $1,-1, i,-i$ form an abelian multiplicative group.
24. What is the solution of the recurrence relation $\mathrm{a},=6 a_{n-1}-9 a_{n-2}$ with initial conditions $a_{0}=1$ and $a_{1}=6$.
25. Show that $n \mathrm{C}_{r}+n \mathrm{C}_{t-1}=\mathrm{n}+1 \mathrm{C}_{r}$ where $\mathrm{n}>r>1$ and, n and r are natural numbers.
26. Use generating functions to solve the recurrence relation $\mathrm{a}_{\mathrm{n}}=3 a_{n-1}+2, a_{v}=1$.
27. Show that the set of all positive rational numbers forms an abelian group under the composition defined by $a * b-\frac{\sim h}{2}$.
28. Suppose \mathbf{M} is a ring of all 2×2 matrices with their elements as integers, the addition and multiplication of matrices being the two ring compositions. Then show that M is a ring with zero divisors.
(5 $\times 2=10$ weightage)

Part D (Essay Questions)

Answer any two questions.

Each question carries 4 weightage.
29. (a) Define a linear recurrence relation with constant coefficients.
(b) Solve the following difference equation by using the method of generating functions

$$
\mathrm{a}, .-\quad+6 a_{r-2}=\mathbf{2}^{\mathbf{r}}+\mathrm{r}, r \quad 2
$$

30. (a) Give a prof by contradiction of the theorem "if $3 n+2$ is add then n is odd.
(b) Show that the following statements about the integer n are equivalent :$P_{i}: n$ is even, $P_{2}: n-1$ is odd $P_{3}: n^{2}$ is even.
31. (a) Define the field and the integral domain.
(b) Prove that every field is an integral domain but the converse need not be true.
