\qquad
\qquad

FIRST SEMESTER B.C.A. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2014

(UG-CCSS)

Complementary Course
 CA1C01-MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS
 Time : Three Hours
 Maximum : 30 Weightage

Part A (Objective Type Questions)
 Answer all questions.
 Each questions carries $1 / 4$ weightage.

1. Give an example of a finite set.
2. When we can say that two sets A and B are disjoint?
3. Define a subset with an example.
4. Give an example of an even functions.
5. If $A=\left[\begin{array}{rrr}3 & 4 & -2 \\ 1 & 6 & 7\end{array}\right]$. Find the transpose of A.
6. Let A be a square matrix of order n. When we can say that the matrix B is an inverse of A.

Fill in the blanks :
7. Two sets A and B are said to be \qquad if and only if every element of A is an element of B and consequently every element of B is an element of A.
8. A non-empty set of which all the sets under consideration are subsets is called the \qquad set.
9. Let A and B be two sets. Then the $\operatorname{set}(\operatorname{a} \mathbf{E} \mathbf{A}(\mathbf{a}, b) \mathbf{E} \mathbf{R}$, for some $b \mathbf{E} \mathbf{B})$ is called the \qquad of R.
10. A relation Ron a set A is

$$
\text { if }(\mathrm{a}, \mathrm{a}) \mathbf{E} \mathbf{R} \text { for every a } \mathbf{E} \mathbf{A}
$$

11. Suppose $f(x)$ and $g(x)$ are two functions such that $\overline{d x}(x)=g(x)$. Then we say that $f(x)$ is an
\qquad of $g(x)$.
12. A set which has only one element is called a
(12 x = 3 weightage)

Part B (Short Answer Questions)

Answer all nine questions.
Each question carries 1 weightage.
13. Write all the subsets of the set $\mathrm{A}=(\mathrm{a}, b, \mathrm{c}\}$.
14. Let $A=(1,2,3,4), \mathbf{B}=(\mathbf{0}, \mathbf{1}, 3, \mathbf{5}, \mathbf{7})$ and $\mathbf{C}=(2,4,6,8\}$. Then find (a) A u B ; (b) A $n \mathbf{B}$ (c) A-B; (d) Bu C.
15. Let $A=\{2,3,5\}$ and $B=\{6,8,10\}$. Define a binary relation R from A to B as follows. For all $(x, y) \mathrm{EAxB},(x, y) \mathrm{E} \mathrm{R} \Leftrightarrow \mathrm{x}$ divides y . Write R and R^{-1}.
16. When we can say that a function is a real function.
17. Differentiate $\left(x^{2}+1\right)(x+3)$

x

18. Differentiate $3 \mathrm{x}^{2}-7 \sin x+10 \mathrm{ex}$.
19. Integrate $\begin{gathered}3 x^{3}-5 x^{2}+\underline{6 x} \\ x\end{gathered}$
20. If $J 3 x d x=8$, find the value of a.

0
21. Let $A=\left[\begin{array}{ll}3 & n \\ 7 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}5 & 0 \\ -7 & 3\end{array}\right]$. Show that B is the inverse of A.

Part C (Short Essay Questions)

Answer any five questions.
Each question carries 2 weightage.
22. Find the total number of distinct relations from a set A of n elements to a set B of m elements.
23. Which of the following functions are odd or even :
(a) $f(x)=\tan x+3 \operatorname{cosec} x+x$.
(b) $f(x)=I x I+1$.
(c) $f(x)=x^{2}+\cos x$.
24. Differentiate $\left(x^{2}+7\right)\left(3 x^{2}-5\right)$ using Product rule. Differentiate the same after expanding as a polynomial. Verify that the two answers are the same.
25. If $\mathrm{y}=2 \sin x+3 \cos \mathrm{x}$. Prove that $\frac{d^{2} y}{d x^{2}}+\mathrm{y}=0$.
26. Evaluate $J \sin ^{\mathrm{e}} x d x$.
27. If $A=\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2\end{array}\right|$ and $B=\left|\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right|$ find $A B$.
28. If $A=\left[\left.\begin{array}{cc}2 & 5 \\ 3 & 1\end{array} \right\rvert\,\right.$, then find $A^{2}-3 A-131$.

29. (a) Find the derivatives of the following function from first principle $f(x)=3 x^{2}+5 x-1$.
(b) Using the method of first principle show that $\frac{x}{d x} x=n x$
30.
(a) Differentiate $\mathrm{x}^{3} \sin x$
(b) Using Quoient rule find the derivatives of (i) $\operatorname{Cot} x$; (ii) $\operatorname{cosec} x$.
(c) Find the derivative of $\tan ^{\prime} \neq$ using function of a function rule
31.
(a) Find x, y, z and t if 2
(b) Find A and B if $A+B=\left|\begin{array}{ll}y & t \\ 7 \\ 7 \\ 2 & 0\end{array}\right| \begin{array}{ll}0 \\ 5\end{array} \left\lvert\, \begin{array}{ll}0 & 0 \\ \text { and } A-B= & \left.\begin{array}{ll}4 & 6 \\ 13 & 0 \\ 0 & 3\end{array} \right\rvert\,\end{array}\right.$
(c) Integrate:
(i) $x \log \mathrm{x}$.
(ii) $\frac{4 \mathrm{x}}{(x-2)(x-1)}$.

