1.	The value of c (n, 0) is :	
	(a) 1.	(b) n .
	(c) O .	(d) $n!$.
2.	What is the order of the recurrence relation $a_{r-2} - 8 a_{r-1} + a_r = 0$, r > 2	
	(a) 0.	(b) 1 .
	(c) 2.	(d) 6.
3. Value of $p(n, n-1)$ is :		
	(a) n.	(b) n !.
	(c) 1.	(d) n - 1.
4.	4. The equivalent statement of $(p Q) n(Q p)$ is:	
	(a) <i>p</i> Q	(b) $p \land \mathbf{Q}$.
	(c) $p v \mathbf{Q}$.	(d) $\sim p \lor \sim Q$.
5.	If $p = and g = then$	
6.	The negation of V x, $p(x)$ is	_
7	. The value of $\frac{n!}{(n-1)!}$ is	
8	Formula for c (n, r) is	
9	Can every group has a generator.	

10. Every finite integral domain is a field. True or False.

Turn over

C 43558

Reg. No·····

Name

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, JULY 2013

(CCSS)

CA 1C 02—DISCRETE MATHEMATICS

Part A (Objective Type questions)

Answer all questions.

Time : Three Hours

Maximum : 30 Weightage

(Pages : 3)

- 11. p(n, r) = p(r, n). True or False.
- 12. Every group is commutative. True or false.

 $(12 \text{ x} \frac{1}{4} = 3 \text{ weightage})$

43558

Part B (Short Answer Questions)

Answer all questions.

13. Let $a_r = \frac{0}{2} \frac{0}{r+5} \frac{1}{r+3}$ and

 $b_r = \begin{cases} 2 & 0^r & 0 \le r \le 1 \\ r+2 & r>3 & Find a_r + b_r \end{cases}$

- 14. Translate the statement into symbolic form"Jack and Jill went up the hill".
- ^{15.} Distinguish between integral domain and a field.
- 16. Write the truth table for (p v Q)n Q.
- $^{17.}$ $\,$ Write the predicate of "x is the father of the mother of y".
- 18. Let a be an arbitrary numeric function and b be the numeric function

Find the generator of c = a * b.

- 19. Solve the recurrence relation $a_{r-1} = a_{r-1} + a_{r-2}$.
- 20. Evaluate c(n, r) bar n = 8 and r = 3.
- 21. If c(n, 9) = < (n, 8), what is c(n, 15).

Part C (Short Essay Questions)

 $(9 \times 1 = 9 \text{ weightage})$

 $c_{\iota} = a_{\iota} b_{\iota}$

Answer any **five** questions.

- 22. Show that $p(n, r) = n (n 1) (n 2) \dots x (n r + 1)$.
- 23. Show that c(n, r) + c(n, r-1) = c(n + 1, r).

- 24. Find the truth table for $(p \ Q) \lor \neg p \land (\neg p \land v Q)$.
- 25. Show that identity element and inverse element are unique in a group.

26. Let
$$a = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 \end{bmatrix}$$
 and $z = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 \end{bmatrix}$...Show that $az \neq z\sigma$.
27. If $\begin{bmatrix} 1 & \frac{1}{2} & x \\ 5 & 4 & 2 & 1 \end{bmatrix}$...Show that $az \neq z\sigma$.

28. Find the value of n such that p(n, 5) = 42 p(n, 3); n 4.

 $(5 \ge 2 = 10 \text{ weightage})$

Part D (Essay Questions)

Answer any **two** questions.

- 29. Find the sum of $1^2 = 2^2 + r^2$; r > 1.
- 30. If G is a group with binary operation *, then show that left and right cancellation laws hold in G.
- 31. Solve the equation $a_r \exists a_{r-1} + b_{r-1}$ and $b_r = a_{r-1} + b_{r-1}$ with boundary conditions $a_0 = 1$ and $b_0 = 0$.

 $(2 \times 4 = 8 \text{ weightage})$