C 43558

(Pages: 3)
Name
Reg. No.........................
FIRST SEMESTER B.C.A. DEGREE EXAMINATION, JULY 2013 (CCSS)
CA 1C 02—DISCRETE MATHEMATICS
Maximum : 30 Weightage
Time : Three Hours

Part A (Objective Type questions)

Answer all questions.

1. The value of $c(\mathbf{n}, \mathbf{0})$ is :
(a) 1 .
(b) n.
(c) 0 .
(d) $n!$.
2. What is the order of the recurrence relation $a_{t-2}-8 a_{t-1}+a_{t}=0, \mathrm{r}>2$
(a) 0 .
(b) 1 .
(c) 2 .
(d) 6 .
3. Value of $p(n, n-1)$ is:
(a) n.
(b) n !.
(c) 1 .
(d) $\mathrm{n}-1$.
4. The equivalent statement of $(p Q) n(\mathrm{Q} \quad p)$ is:
(a) $p \quad$ Q
(b) $\quad p A \mathbf{Q}$.
(c) $\quad p v \mathbf{Q}$.
(d) $\sim p \vee \sim Q$.
5. If $p=$ and $g=$ then
6. The negation of $\mathbf{V} \mathbf{x}, p(x)$ is \qquad
7. The value of $\frac{n!}{(n)}$-1 is
8. Formula for $c(n, r)$ is \qquad
9. Can every group has a generator.
10. Every finite integral domain is a field. True or False.
11. $p(n, r)=p(r, \mathrm{n})$. True or False.
12. Every group is commutative. True or false.

Part B (Short Answer Questions)

Answer all questions.
13. Let $a_{r}=\begin{aligned} & 0 \quad 0 \leq r \leq 2 \\ & 2 \mathrm{r}+5 \quad \begin{array}{r}\mathrm{r}\end{array}>_{3} \text { and }\end{aligned}$

$$
b_{r}=\left\{\begin{array}{rr}
0 & \text { or } \\
r+2 & 0 \leq r \leq 1 \\
r>3
\end{array} \text {. Find } a_{a}+b_{r}\right.
$$

14. Translate the statement into symbolic form
"Jack and Jill went up the hill".
15. Distinguish between integral domain and a field.
16. Write the truth table for $(p \vee \mathrm{Q}) n \mathrm{Q}$.
17. Write the predicate of " x is the father of the mother of y ".
18. Let a be an arbitrary numeric funciton and b be the numeric function

$$
c_{r}=a_{l} b_{r}
$$

Find the generator of $\mathrm{c}=\mathrm{a} * \mathrm{~b}$.
19. Solve the recurrence relation $\mathrm{a}, .=a_{r-1}+\mathrm{ar}-2$.
20. Evaluate $c(n, r)$ bar $\mathrm{n}=8$ and $r=3$.
21. If $c(n, 9)=<(n, 8)$, what is $c(n, 15)$.

Part C (Short Essay Questions)

Answer any five questions.
22. Show that $p(\boldsymbol{n}, \boldsymbol{r})=\boldsymbol{n}(\boldsymbol{n}-\mathbf{1})(\boldsymbol{n}-2) \ldots \mathrm{x}(\mathrm{n}-r+\boldsymbol{1})$.
23. Show that $c(n, r)+c(n, r-1)=c(n+1, r)$.
24. Find the truth table for $(p \quad Q) \vee \sim p \wedge(\sim p \wedge V Q)$.
25. Show that identity element and inverse element are unique in a group.
26. Let $\mathrm{a}=\left\lvert\, \begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3\end{array}\right.$ and $z\left|\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 1\end{array}\right|$.. Show that $\mathrm{az} \neq z \sigma$.
27. If $1 \quad \frac{\mathrm{x}}{10!^{\circ}}$ Find x.
28. Find the value of n such that $p(n, 5)=42 p(n, 3) ; n 4$.

$$
\text { (5 x } 2=10 \text { weightage) }
$$

Part D (Essay Questions)

Answer any two questions.
29. Find the sum of $1^{2}=2^{2}+\quad+r^{2} ; r>1$.
30. If G is a group with binary operation $*$, then show that left and right cancellation laws hold in G.
31. Solve the equation $a_{t} 3 a_{r-1}+2 b_{r-1}$ and $b, .=a_{r-1}+b_{r-1}$ with boundary conditions $a_{0}=1$ and $b_{u}=0$.

