FIRST SEMESTER B.C.A. DEGREE EXAMINATION, JANUARY 2013 (CCSS)
 BCA

CA 10 02—DISCRETE MATHEMATICS
Time : Three Hours

Part A (Objective Type Questions)
 Answer all twelve questions.

1. The value of $c(n, n)$ is:
(a) 1 .
(b) n.
(c) 0 .
(d) $n!$.
2. What is the order of the recurrence relation $a_{r}-6 a_{r}-1=0, r 1$.
(a) 0.
(b) 1 .
(c) 2 .
(d) 6 .
3. Example of a group of four elements.
(a) s_{4}.
(b) Klein group.
(c) Set of integers less than under addition.
(d) z_{4} under multiplication.
4. The value of $n p_{n} \mathbf{- 1}$ is :
(a) n .
(b) $n!$.
(c) 1.
(d) $\mathbf{~ m}-1$.
5. If $p=\mathrm{F}$ and $q=\mathrm{F}$ then $p \quad \mathrm{Q}$ is \qquad
6. The negation of $3 x, p(x)$ is
7. The value of 01 is \qquad
8. Formula for $p(n, r)$ is \qquad
9. If $p=\mathrm{T}$ then $p n \ngtr=\mathrm{F}$. True or False.
10. Can every group of prime order a generator ?
11. Every integral domain is a fluid. True or False.
12. $c(n, r)=c(n, n-r)$. True or False.

Part B (Short Answer Questions)

Answer all questions.
13. Form the conjunction of :

P : It is raining today.
Q : There are 20 tables in this room.
14. Evaluate $p(n, r)$ for $n=6$ and $r=2$.
15. Find the number of ways to paint 12 offices so that 3 of them will be green, 2 of them pink, 2 of them yellow and the remainings are white.
16. If $c(n, 9)=c(n, 8)$. Then find c
17. Define commutative ring with example.
18. Write the truth table for conjunction and disjunction.
19. Symbolize the expression
"all the world loves a lover".
20. Suppose a housekeeper wants to schedule spaghetti dinner three times each week. Find the number of ways of scheduling it.
21. If G is group with binary operation $*$ and if a and b are any elements of G . Then show that the linear equation $\mathrm{a} * x=b$ and $\mathrm{y} * \mathrm{a}=b$ have unique solutions in G .

Part C (Short Essay Questions)
Answer any five questions.

If $a=\alpha_{0}+\mathrm{a}_{\mathrm{i}} \mathrm{r}+\mathrm{a} 2 \mathrm{r}^{2}+\quad+\alpha n r$, show that $a=o\left(r^{-}\right)$.

If $8!+{ }_{9}^{1}=\frac{x}{10} \quad$ find \quad.
'ind the value of n such that $p(n, 5)=42 p(n, 3)$.
now that every field F is an integral domain.
ate and prove division algorithm for Z .
27. Find the truth table for $(p v Q) v p$.
28. Let $a=r+O(1 / r)$ and $b=\sqrt{r}+O\left({ }^{1} r\right)$. Show that $a b=r^{\wedge}+0$

Part D (Essay Questions)

Answer any two questions.
29. Solve the equations :

$$
a_{r}=3 a_{r-1}+2 b_{r-1} 1 \text { and }
$$

$$
b_{r}=a_{r} \quad+b_{r}-l \text { with the }
$$

boundary conditions $a_{u}=1$ and $b_{u}=0$.
30. Ir \mathbf{R} is a ring with additive identity 0 , then for any $a, b \mathrm{E} \mathbf{R}$, we have
(a) $0 \cdot a=a \cdot 0=0$.
(b) $\quad a(-b)=(-a) b=(a b)$.
(c) $(-a)(-b)=a b$.
31. Write the truth table for $\sim\left(p_{\mathrm{A}} \mathrm{Q}\right)$ and $(\sim p v \quad \mathrm{Q})$ and verify them.

