41850

rime : Three Hour

(Pags s :

Name.	
r tanno	

Reg. No.....

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, APRIL/MAY 2013 (CCSS)

CA 2C 04-NUMERICAL METHODS IN C

Maximum : 30 Weightage

I. Answer all *welve* questions :

- 1 When we say that is a root of the equation f(x) = 0.
- 2 Give the Newton-Raphson iteration formula.
- 3 Let f be the polynomial $a_0 x'' + \dots + a_{n-1} x + a_0$ of degree n. Find nth difference of f(x).
- 4 In the process of Numerical integration, what is the order of the error in ^{the} trapezoidal rule ?

Fill in :he blanks :

- 5 The method of obtaining the solution of the system of equations $AX = B t_0$ reducing the matrix A to a diagonal matrix is ______
 - (a) Gauss elimination method.
 - (b) Gauss-Jordan elimination method.
 - (c) 'Triangularisation method.

6 The process of computing the derivative $\frac{dy}{dy}$ for some particular value of is called

- (a.) Interpolation. (b) Numerical differentiation.
- (c) Numerical integration. (d) Extrapolation.
- 7 In the method of false position to find the root of f(x) = 0 between a and b, the first approximation is given by

....

(0)
$$X1 = \frac{a+b}{2}$$
 (b) $af(\underline{b}) - \underline{b}f(\underline{a}) = f(\underline{b}) - f(\underline{a})$

(c)
$$\frac{af(a) + bf(a)}{f(b) + f(a)}$$
 (d)
$$\frac{af(a) - bf(b)}{f(a)} = x_1$$

Turn over

+1050

interpolation formula is used to interpolate the values of y near the end of the

- ^(a) Newton's forward interpolation formula.
- ^(b) Newton's backward interpolation formula.
- (c) Gauss forward interpolation formula.

9 Fir $\Delta(2^x)$

10 Which

8

(a) 2r + h

 $2 \times 2 \mathfrak{l}_h$

method is based on the repeated application of the intermediate value theorem $\frac{1}{2}$

(d) $2' + h - 2^{\pm h}$.

(b) $2^{x}(2^{h} - ...)$

- (a) Iteration method. (b) Bisection method.
- (c) False position method. (d) Second method.

11 WI . at is the base of the hexadecimal system $_2$

(a) 8.	(b) 10.
(c) 2 .	(0) 10.
	(d) 16.

12 W_{Lat} is the relation between the average operator and the shift operator ?

(a)
$$\mu \frac{E^{\frac{12}{2}} + 2}{2}$$
 (b) $\mu = \frac{E^{\frac{12}{2}} - E^{-\frac{12}{2}}}{2}$
(c) $E = \frac{\mu^{\frac{12}{2}} + \mu^{-\frac{12}{2}}}{2}$.

 $(12 \ \frac{1}{4} \ \mathbf{3} \text{ weightage})$

13

the first approximation of the root lying between 0 and 1 of the, equation $x^3 + 3x - 1 = 0$

14 Solve the following equations by Gauss Jordan method $x \rightarrow 2, 2x$

15. Evaluate $(\Delta - V)x^{2}$ taking the interval of differencing as *h*.

26 Using Euler's method, solve $\frac{dy}{dx} - x + xy$ with y (0) = 2. Find y (0.1) and y (0.2).

- 27 Obtain. the least squares polynomial approximation of degree one for f (x) = $x^{\frac{1}{2}}$ in 10, 11.
- 28 .Find the value of x correct to one decimal place for which y = 7. Using Lagrange's inverse interpolation formula. Given
 - 1 3 4 y 4 12 19

 $(5 \times 2 = 10 \text{ weightage})$

IV. Essay type 'questions. Answer. any two.

29 Using Runge-Kutta method of fourth order, find y (0. 2) given that $\frac{dy}{dx} = +xy$, y (0.1)

2.1083.

30 Evaluate $\int_{0}^{10} \frac{dx}{1+x^2}$ by using

(i) Trapezoidal rule.

(2) Simpson's one third rule.

31 Solve the following system by the method of triangularisation:

2x - + 10z = 3, -x + 4y + 2z = 20,

 $(2 \times 4 = 8 \text{ weightage})$

4

16 Fint a cubic polynomial which takes the following values using Newton's forward interpolation formula

3

0 1 2 3 f(x)1 2 1 10

17 Show that $y_n = 1 - \frac{2}{n}$ is a solution of the difference equation

- $(y_{+1}) + n = 2n 3.$ (n 36010
- 18 Find the n^{th} difference of *ex*.
- 19 Using Simpson's rule, find $\int_{0}^{4} e^{x} dx$ given $e^{\circ} = 1$, $e^{1} = 2$. 72, $e^{2} = 7$. 39, $e^{3} = 20.09$ and $e^{4} = 54.6$ 00 1005

20 Fin:. y (0.1) by Euler's method. Given that $\frac{dy}{dr}$ Y, y (0)

- 21 If $l_4 = 0.775$, $l_2 = 0.7828$, find I using Romberg's method.

- III. Short essay question. Answer any five :
 - 22 The equation $8x^3 12x^2 2x + 3 = 0^{-1} 3^{-3}$ real roots in the interval [-2, 3]. Find the intervals each of unit length containing each one of these roots.
 - 23 Find the value of y from the following data at x = 2.65

- 1 0 1 2 3 -21 6 15 12 3

- 24 Solv: the following system of equations by Gauss-Jordan method
 - x + y + z = 92x - 3y + 4z = 133x + 4y + 5z 40

25 Using Taylor's series method, find y at x = 1.1 by solving $\frac{dy}{dx} = x^2 + y^2$ given y(1) = 2.3

Turn over

(9 x 1 = 9 weightage)

00

C

្រ្លាស់ព្

Le les 1010

C 41850