Name

\qquad
Reg. No. \qquad

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, MAY 2014

(U.G.-CCSS)
 Complementary Course
 CA 2C 04-NUMERICAL METHODS IN C

Time : Three Hours
Maximum : 30 Weightage

Part A (Objective Type Questions)

Answer all twelve questions.

1. The numbers in the computer word can be stored in two forms. Which are they ?
2. Define the inherent error.
3. When we can say that is a root of the equation $f(x)=0$.
4. Define the central difference operator 5 .
5. Write Newton's forward difference approximation of $0\left(h^{2}\right)$.
6. What is the formula to find $\int_{\mathrm{a}} f(x) d x$ using Simpson's rule ?

Fill in the blanks :
7. To avoid the difficulty of keeping every number less than 1 in magnitude during computation, most computers use \qquad representation for a real number.
8. Bisection method is based on the repeated application of the theorem.
9. In Gauss-Jordan elimination method the coefficient matrix is reduced to a \qquad matrix.
10. If there are $\mathrm{n}+1$ distinct points a $\mathrm{x}_{0}<x_{1}<\mathrm{x}_{2} \ll x_{n} b$, then the problem of Lagrange and Newton interpolation for the continuous function $f(x)$ on $[a, b]$ is to obtain $p(x)$ satisfying the conditions \qquad
11. The Hermite interpolating polynomial interpolates not only the function $f(x)$ but also its
\qquad at a given set of tabular points.
12. The general problem of numerical integration is to find an approximate value of the integral $\mathrm{I}=$ \qquad where $\mathrm{w}(x)>0$ in $[\mathrm{a}, \mathrm{b}]$ •

Part B (Short Answer Questions)

Answer all nine questions.
13. Find the decimal number corresponding to the binary number $(111 \cdot 011)_{2}$.
14. Construct the difference table for the sequence of values $f(x)=(0,0,0, \varepsilon, 0,0,0)$.
15. Solve the equations $x+y=2$ and $2 x+3 y=5$ by Gauss-Jordan method.
16. State intermediate value theorem.
17. Evaluate $\int_{0}^{4} \int e^{x} d x$ by Simpson's '1/3' rule using the data $e=2.72, \mathrm{e}^{2}=7.39, e^{3}=20.09$ and

$$
e^{4}=54.60 \bullet
$$

18. Perform 2 iterations of the bisection method to obtain a real root of the equation $x 3-x-11=0$ -
19. Solve $\frac{d y}{d x}=1-y, y(0)=0$ using Euler's method. Find y at $x=0.1$.
20. Find the $n^{\text {th }}$ difference of $e x$.
21. Show that $\mu=\left[1+8^{2} / 4\right]^{1 / 2}$.

$$
\text { (} 9 \times 1=9 \text { weightage) }
$$

Part C (Short Essay Questions)
 Answer any five questions.

22. Apply Cramer's rule to solve the equations, $3 x+y+2 z=3,2 x-3 y-z=3$ and $x+2 y+z=4$.
23. Solve the following system of equations using Gaussian elimination method $x+y+z=9$, $2 x-3 y+4 z=13$ and $3 x+4 y+5 z=40$.
24. Construct Newton's forward interpolation polynomial for the following data :

$x:$	4	6	8	10
$y:$	1	3	8	16
	10	$d x$		
valuate	$\int_{0}, \bar{x} 2$	by using Trapezoidal rule.		

26. Using Taylor's method, find $\mathrm{y}(0.1)$ from $\frac{d y}{d x}+2 x y=1, \mathrm{y}_{\mathrm{o}}=0$.
27. Evaluate $\sqrt{12}$ to four places of decimals by Newton-Raphson method.
28. The equation $8 x 3 _12 x^{2}-2 x+3=0$ has 3 real roots in the interval $[-2,3]$. Find the intervals each of unit length containing each one of these roots.

Part D (Essay Questions)

Answer any two questions.

29. (a) Write the Lagrange's interpolation formula.
(b) Use Lagrange's formula to find the value of y at $x=6$ from the following data :

$x:$	3	7	9	10
	168	120	72	63

30. (a) Find $y^{\prime}(x)$ given :

x	$:$	0	1	2	3	4
$y(x):$	1	1	15	40	85	

(b) The population of a certain town is shown in the following table :

Year x	$: 1931$	1941	1951	1961	1971
Population in 1961 y : 40.62	60.80	79.95	103.56	132.65	

31. (a) What is the relation between Runge-Kutta method and modified Euler's method.
(b) Use Runge-Kutta method of the fourth order to find y (0.1) given that :
$\begin{aligned} & d y \quad \frac{1}{x+y} \\ & d x\end{aligned}, y(0)=1$.
