Turn over

Reg. No.....

Name.....

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, MAY 2015

(Pages : 3)

(CUCBCSS-UG)

Complementary Course

BCA 2C04-NUMERICAL METHODS IN 'C'

Time : Three Hours

Maximum: 80 Marks

Part A

Answer all ten questions.

- 1. Add the normalized floating points 0.6756 E4 and 0.7644 E6.
- 2. Define the percentage error.
- 3. Find the second approximation of a real root of the equation $x^3 x 1 = 0$ using bisection method.
- 4. Write the Newton-Raphson formula.
- 5. Give an example of a matrix which is both upper and lower triangular.
- 6. Write the following system of equations in matrix form.

2x+4y+z=3, 3x+2y-2z=2, x-y+z=6.

- 7. Find the eigen values of the matrix $\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$
- 8. Find V (3x).
- 9. Express the shift operator E in terms of the differential operator D.
- 10. Write the Gauss Quadrature formula.

(10 x 1 = 10 marks)

Part B

Answer all five questions.

- 11. Find the relative error and percentage error if 0.005998 is rounded-off to 3 decimal digits.
- 12. Find the second approximation to the 4th root of 32 using Regula-falsi method.
- 13. Solve 2x + 3y = 8, x 2y + 3 = 0 using cramer's rule

C 83010

- 14. Evaluate $(A V) x^2$ taking interval of differencing as *b*.
- 15. Write the fourth order Runge-Kutta formula.

 $(5 \times 2 = 10 \text{ marks})$

Part C

- Answer any five questions.
- 16. Using **Regula-falsi** method compute the real root of $xe^x = 2$ correct to 3 decimal places.
- 17. Use Newton's method to find a root of the equation $x^3 3x 5 = 0$ correct to 3 decimal places.
- 18. Find the Lu factorization of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$
- 19. Solve by Gauss elimination method

$$x + 2y + z = 3$$
, $2x + 3y + 3z = 10$, $3x - y + 2z = 13$.

20. Find the area of a circle of diameter 82 units using Newton's forward interpolation formula Given the following table.

Diameter (d)	:	80	85	90	95	100
Area (A)	:	5026	5674	6362	7088	7854

5

21. Find the Lagrange's interpolating polynomial for the following function f(x)

x 0 1 2 f(x): 2 5 7

22. Prove that

(a)
$$\Delta y_{u} = y4 - y3 + 6y2 - 4y1 + y0$$

(b)
$$(E^{1} + E^{1})(1 + \Delta)^{1} = 2 + 0$$

23. Given the following table

x 0 1 2 3 4

 e^x 1 2.72 7.39 20.09 54.60

Evaluate $\int_{v}^{4} e \, dx$ using simpson's $\frac{1}{3}$ rule.

(5 x 4 = 20 marks)

Part D

Answer any five questions.

- 24. Find the real root of $x^4 x = 10$, correct to 3 decimal places by Newton-Raphson method,
- 25. Estimate the production for the year 1964 and 1966 from the following table

year 1961 1962 1963 1965 1967

Production : 200 220 260 350 430

26. Find the Lu factorization of the matrix

27. Find the value of y when x = 5. Given that

Х	1	3	4	8	10
V	8	15	19	32	40

- 28. Using Gauss-Jordan method find the inverse of the matrix

29. Find f'(1.1) from the fllowing table

х	1.0	1.2	1.4	1.6	1.8	2.0
f(x)	0	0.128	0.544	1.296	2.432	4.000

30. Use modified Euler's method to determine y(0.2) is two steps from $\frac{y}{dx} = x^2 + y$, y(0) =1.

31. Calculate $\int_{a}^{0} \frac{dx}{1+x}$ by dividing [2,10] in to 8 equal parts upto 4 decimal places using

(a) Trapezoidal rule ; (b) Simpson's rule.

 $(5 \ge 8 = 40 \text{ marks})$