C 83009

\qquad
\qquad

SECOND SEMESTER B.C.A. DEGREE EXAMINATION, MAY 2015

(CUCBCSS-UG)

Complementary Course

BCA 2C 03-COMPUTER ORIENTED STATISTICAL METHODS
Time : Three Hours
Maximum : $\mathbf{8 0}$ Marks

Section A
Answer all ten questions.

1. The pair (X, Y) takes values $(5,8)$ and $(-1,2)$. Then the correlation between X and Y is :
(a) 0 .
(b) 1 .
(c) -1 .
(d) Cannot say.
2. The limiting relative frequency approach of probability is known as :
(a) Axiomatic probability.
(b) Classical probability.
(c) Statistical probability.
(d) A priori probability.
3. If $P(X 5 M)=P(X \geq M)$, then M is :
(a) A.M.
(b) Median.
(c) G.M
(d) H.M.
4. For a Poisson distribution which of the following is true ?
(a) Mean < Variance.
(b) Mean $>$ Variance.
(c) Mean \geq Variance.
(d) Mean = Variance.
5. The Level of significance is the probability of :
(a) Type I error.
(b) Type II error.
(c) Not committing an error.
(d) None of the above.
6. The empirical relation between Mean, Median and mode is
7. is a measure of dispersion which utilizes only extreme values.
8. If \mathbf{A} and \mathbf{B} are two events and their union is the sample space, then $P\left(A \cap B^{e}\right)=$ \qquad
9. If X_{1} and X_{2} are two independent standard normal variables, then the ratio of their squares follows \qquad distribution.
10. 1-Probability of type II error is called -

Section B

Answer all five questions.
11. What is an average ? Define AM, GM, HM.
12. Define mutually exclusive events and independent events. Give one example for each.
13. Define r^{*} raw moment and r^{*} central moment. Evaluate the first two of each.
14. Distinguish between statistic and parameter. Give an example for each.
15. Define two types of errors.

Section C

Answer any five questions.
16. Find the A.M and Median of the following data :-

Class	\ldots	O -10	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	6	14	20	12	8	

17. Find the quartile deviation of the data given below :

X	10	20	30	40	50	60	70	80
Frequency \ldots	6	12	15	20	12	10	8	7

18. Fit the line $\mathrm{Y}=\mathrm{A}+\mathrm{BX}$:

X		1	2	3	4	5	6	7	8	9	10
Y	\ldots	5.5	8	10.5	13	15.5	18	20.5	23	25.5	28

19. Write the p.m.f. of Poisson distribution with mean X, Evaluate the probabilities for $X=0,1,2$ when $X=2$.
20. Derive the m.g.f. of binomial distribution. Hence find its mean and variance.
21. Define t, x^{2} and F distributions.
22. Distinguish between point estimate and interval estimate. Write the 95% confidence interval for the mean and variance of normal population.
23. Find the mean and variance of the following distribution :-

X	2	4	6	8	10.	12	14	16
p	.01	.01	.01	.02	.02	.01	.01	.01

Section D

Answer any five questions.
24. Compute Karl Pearson's correlation coefficient :

X	\ldots	4	10	11	12	12	15	18	20	21	22
Y		3	12	18	20	21	28	32	18	35	30

25. Find the coefficient of variation for the following data :

Class	\ldots	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	\ldots	5	12	18	15	12	8

26. If $f(x, y)=\mathrm{ex}, 0<\mathrm{x}, \mathrm{y}<\infty$, find the conditional distributions of X given Y and Y given X .
27. A random sample of size 64 is taken from a normal distribution with mean 100 and standard deviation 80. Find :
$\begin{array}{lll}\text { (a) } \mathrm{Pa}<80) ; \text { (b) } \mathbf{P}(\mathbf{8 0}<\mathbf{X}<\mathbf{1 2 0}) & \text { (c) } \mathrm{P}(\overline{\mathrm{X}}>90) \text {. }\end{array}$
28. The probability of a light bulb produced by a company is defective is .001 . In a box contains 100 bulbs. In a consignment of 1000 boxes how many boxes will have : (i) no defective ; (ii) exactly $\mathbf{1}$ defective.
29. In a survey, 1200 persons selected at random were asked their opinion whether an MP's term is to be limited to 3 years in the parliament. Out of this sample, 780 persons opined Yes. Construct a 995 confidence interval of the corresponding true proportion regarding such opinion of all persons.
30. Explain the desirable properties of an estimate. Give examples.
31. A movie house is filled with 700 people and 60% of these are females, 70% of these people are seated in the no smoking area including 300 females. What is the probability that a person selected at random in the movie house is : (a) a male ; (b) a female smoker; (c) a male or a non-smoker and ; (d) a smoker if we knew that the person is a male ?

$$
(5 \times 8=40 \text { marks })
$$

