\qquad
\qquad

SECOND SEMESTER B.C.A. DEGREE [SUPPLEMENTARY/IMPROVEMENT] EXAMINATION, APRIL/MAY 2015 (UG-CCSS)

 Complementary Course

 Complementary Course
 CA 2C 04—NUMERICAL METHODS IN C

Time : Three Hours
Maximum : 30 Weightage
I. Answer all twelve questions :

1 Give an example of an algebraic equation.
2 In the bisection method to find the root between a and b how we can find the first approximation.
3 Give the Newton-Raphson iteration formula.
4 When we can say that ε is a root of the equation $f(x)=0$?
Fill in the blanks :
5 In Gauss elimination method the system of simultaneous equations is transferred to an equivalent \qquad system.
(a) Lower triangular.
(b) Upper triangular.
(c) Diagonal.

6 The relation between the shift operator \mathbf{E} and the backward difference operator V is given by ∇
(a) $\mathrm{E}^{1 / 2}-\mathrm{E}^{1 / 2}$.
(b) $1-\mathrm{E}^{-}$.
(c) $\mathrm{E}-1$.
(d) $\mathbf{1}+\mathbf{E}$.

7 Runge-Kutta method of second order is also known as \qquad
(a) Euler's method.
(b) Picard's method.
(c) Modified Euler's method.
(d) Taylor Series method.

8 In the method of false position to find the $\operatorname{root} \operatorname{off}(x)=0$ between a and b, the first approximation is given by \qquad
(a) $x_{1}=\frac{\mathbf{a}+\boldsymbol{b}}{2}$
(b) $\quad \mathrm{xi}-\frac{o f(\boldsymbol{b})+b f(a)}{t(b)-f(a)}$
(c) $\mathbf{x i}=\frac{a f(a)-b f(b)}{f(a)-f(b)}$
(d) $\begin{gathered}a f(a)+b f(a) \\ f(b)+f(a)\end{gathered}$

9 Which interpolating polynomial assigned both the function values and its first derivative values at each point of interpolation :
(a) Hermite interpolation Polynomial.
(b) Lagrange's interpolation polynomial.
(c) Newton's interpolation formula.
(d) Gauss interpolation formula.

10 What is the base of the hexadecimal system?
(a) 10 .
(b) 6.
(c) 8 .
(d) 16 .

11 In numerical integration which rule has an error of order. h^{2} :
(a) Trapezoidal rule.
(b) Simpson's $1 / 3$ rule.
(c) Simpson's three eight rule.

12 If $\mathrm{f}(x)=1 / x$, find the divided difference $f[a, \quad:$
(a) $\begin{gathered}1 \\ a b\end{gathered}$
(b) $\begin{aligned} & -1 \\ & a b\end{aligned}$
(c) $a-b$.
(d) $\quad a b-b$.
II. Short answer type questions. Answer all questions :

13 Taking h to be the interval of differencing find $\Delta^{-} \boldsymbol{e}^{x}$.
14 Find y (0.1) by Euler's method given that $\frac{d^{\prime}}{d x}=1-\mathrm{y}, \mathrm{y}(0)=0$.
15 Find the 1 st approximation of the root lying between 0 and 1 of the equation $x^{3}+3 x-1=0$ by Newton-Raphson formula.

16 Solve the following equations by Gauss-Jordan method $x+y=2,2 x+3 y=5$.
17 Show that $\mathrm{Y}=1-{ }_{\pi}^{2}$ is a solution of the difference equation $(\mathrm{n}+1) y_{u+1}+n y_{\mathrm{a}}=2 \mathrm{n}-3$.
18 Convert $(58)_{10}$ to the corresponding binary number.

19 Construct the forward difference table for the following data :-

$x:$		0	1	2	3	4	
$y:$	8	1	1	9	1	5	6

20 State Trapezoidal rule to evaluate $\left.\underset{x_{0}}{J} \mathbf{f} x\right) d x$.
21 If $\mathrm{I}_{1}=\mathbf{0 . 7 7 5}, \mathrm{I}_{2}=0.7828$. Find \mathbf{I} using Romberg's method.
($9 \times 1=9$ weightage)
III. Short essay questions. Answer any five :

22 Perform 4 iterations of the Newton-Raphson method to obtain the approximate value of $(17)^{2 / 3}$ starting with the initial approximation $x_{\mathrm{U}}=2$.

23 Apply Cramer's rule to solve the equations $3 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=3,2 \mathrm{x}-3 \mathrm{y}-z=-3, x+2 \mathrm{y}+z=4$.
24 Solve the following system of equations using Gauss elimination method :

$$
\begin{aligned}
& x+y+z=9 \\
& 2 x-3 y+4 z=13 \\
& 3 x+4 y+5 z=40
\end{aligned}
$$

25 Obtain the least squares polynomial approximation of degree one for $f(x)=x^{1 / 2}$ on $[0,1]$.
26 Find the value of y from the following data at $x=2.65$.

$$
\begin{array}{ccccc}
x:-1 & 0 & 1 & 2 & 3 \\
-21 & 6 & 15 & 1 & 2
\end{array}
$$

27 Evaluate $\int_{1+\mathrm{x}}^{1}-\frac{d x}{2}$ using Trapezoidal rule.
28 Using Euler's method solve $\frac{d y}{d x}=1+x y$ with $\mathrm{y}(0)=2$. Find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$.

- $(5 \times 2=10$ weightage $)$
IV. Essay type questions. Answer any two :

29 Given $y^{-}=x^{2}-y, y(0)=1$. Find $y(0.1)$ using Runge-Kutta fourth order.

30 Evaluate $\int_{0}^{1} \frac{1}{1} d x-$ using
(i) Trapezoidal rule.
(ii) Simpson's $1 / 3$ rule.
(iii) Simpson's ${ }^{3} / 8$ rule.

Find the error in each method by comparing with the actual integration upto 4 places of determination.

31 Find the Hermite's interpolation polynomial for the following data :-

x		0	1	2
$f(x):$	1	0	9	
$f^{\prime}(x):$	0	0	24	

