(Pages : 2)

Name.....

Reg. No.....

FOURTH SEMESTER B.A. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, MAY 2016

(UG-CCSS)

Core Course—Economics

EC 4B 05—QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS—II

(2013 Admissions)

Time : Three Hours

Maximum : 30 Weightage

I. Objective type questions. Answer all *twelve* questions.

1 If a, *b*, *c*, *d* are in arithmetic progression then ad = _____

 $2 \log_e e^2 -$

 $3 2 + 4 + 6 + \dots + 2n = \dots$

4 If A is any set, then A u ϕ = _____

5 $f(x) = x^2 + 25$ is an odd function in x. State true *or* False.

6 Slope of the line y = 4x - 5 is _____

7 If
$$\frac{x_+ 3}{3 x}$$
 2, then x _____

8 Matrix multiplication is always commutative. State true or False.

9 If A is a matrix of order 3 x 2 then the order of AT is _____

(12 x = 3 weightage)

II. Short answer type questions. Answer all nine questions :

13 If $\log_{10} 2 = 0.3010$ and $\log_{10} 3 = 0.4771$, find the value of $\log_{10} 6$.

- 14 Find the harmonic mean of 6, 10.
- 15 Define power set.

16 Define function.

17 Find the equation of a straight line having slope 2/3 and passing through the point (1, 1).

18 Distinguish between singular and non-singular matrix.

19 Define skew symmetric matrix.

20 Differentiate the $e^x \log x$ with respect to x.

21 If
$$z = xy + 7$$
, find $\frac{\partial^2 z}{\partial x \partial y}$

 $(9 \times 1 = 9 \text{ weightage})$

III. Short essay or paragraph questions. Answer any five questions

- 22 Find three numbers in arithmetic progression whose sum is 12 and the sum of whose squares is 56.
- 23 Find the equilibrium price and quantity if x = 25 3p and x = 2p + 10 respectively denote the demand and supply curves.
- 24 Solve the equation $\log (x^2 9) \log (x 9) = \log 16$.
- 25 State the properties of determinants.
- 26 Find the minimum value of the function $f(\mathbf{x}) = x\sqrt{x} + 1$.
- 27 Define homogeneous function state Euler's theorem.

28 Find the points of inflexion of the curve $y = (\log_e)$

 $(5 \ge 2 = 10 \text{ weighta})$

IV. Essay questions. Answer any two questions :

29 Solve the following equations by Cramer's rule

$$3x + 3y - z - 11 = 0$$
, $2x - y + 2z - 9 = 0$, $4x + 3y + 2z = 0$.

$$\begin{array}{c|c} 7 - 11 & 16 \\ 30 \text{ If } A = -3 & 5 & -7 \\ 1 & -2 & 3 \end{array}$$
, find A^{-1} . Verify that $AA^{-1} = I$.

31 If $z = x^3 - +3x^2y$ show that $x = \frac{3}{x} + y = 3z$.

 $(2 \times 4 = 8 \text{ weightage})$