\qquad

FOURTH SEMESTER B.A. DEGREE EXAMINATION, APRIL/MAY 2015 (U.G.-CCSS)

Core Course-Economics

EC 4B 05—QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS-II
(2013 Admissions)
Time : Three Hours
Maximum : 30 Weightage
I. Objective type questions, Answer all twelve questions :

1 If a, b, c are in arithmetic progression then $b-a=$ \qquad
$2 \log _{10} 1000=$ \qquad
3
$316^{4}=$
4 If A is any set, then $A n(I)=$ \qquad
5 If $f(x)$ is an even function, then $f(-x)$
$6 y=3 x+5$ is a straight line. State True or False.
7 If $\underset{3}{x}+\frac{x}{z}=5$, then $x=$
8 Matrix addition is commutative. State True or False.
9 If A is a symmetric matrix then $\mathrm{AT}=$ \qquad
10 If $\left|\begin{array}{ll}1 & -3 \\ 3 & \end{array}\right|=0$, then $x=$ \qquad
$11 f \quad x_{-2}^{-4}$ is not continuous at x \qquad
$12 \begin{aligned} & d^{3} \\ & d x \\ & =e^{-}-\end{aligned}$
II. Short answer type questions. Answer all nine questions

13 Distinguish between finite and infinite sets.
14 Define disjoint sets.
15 If $A=\{1,2\}$ and $B=\{a\}$, find $A \times B$.

16 What do you mean by a linear equation Give one example.
17 Define the terms domain and range.
18 Give one example for upper triangular matrix.
19 Find all cofactors of $\left|\begin{array}{ll}3 & 7 \\ 1 & 2\end{array}\right|$
20 Define convexity of a function.
21 If $\mathrm{y}=\mathrm{x} \log \mathrm{x}$, find the value of $\frac{d x}{d x}$.
($9 \times 1=9$ weighta $_{\xi}$
III. Short essay or paragraph questions. Answer any five questions :

22 If $\mathrm{A}=\{0,1,2,5,7\}, \mathrm{B}=\{1,2,3\}, \mathrm{C}=\{5,7,8\}$, find $\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}$ and $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}$.
23 Solve the equation $x(x-3)=2(10-x)$.
24 If the third and seventh terms of a geometric progression are 2 and $1 / 8$ respectively find i tenth term.
25 Draw the graph of $y=x^{2}$.
26 If $A=\begin{array}{rr}1 & O \\ {\left[\begin{array}{ll}2 & 3\end{array}\right.}\end{array}$, find the value of A^{2}.
27 Find the inverse of the matrix $\left\lvert\, \begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 3\end{array}\right.$
28 Solve the equation $x-2 y=16$ and $3 x+y=-1$ by using Cramer's rule.
$(5 \times 2=10$ weig!
IV. Essay questions. Answer any two questions :

29 If $\left|\begin{array}{lll}x^{3}+1 & x^{2} & x \\ y^{3}+1 & y^{2} & y \\ z^{3}+1 & z^{2} & z\end{array}\right|=0$ with $x \neq y \neq z$, then show that $x y z=1$.
30 If $z=\log \sqrt{x^{\prime}}+\mathrm{y}^{2}$, prove that ${\underset{z}{ } z^{-} z a^{2} Z}_{\partial y}=\mathrm{v}$.

31 If $x^{y}=y$ show that $\begin{aligned} & \left.d \underline{y} Y\left(\begin{array}{ll}y & x \underline{\log y}) \\ d x & x\end{array}\right) y \log x\right)\end{aligned}$

