(Pages: 3)	Name·····
------------	-----------

Reg.	No•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
------	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION NOVEMBER 2013

D 50838

(UG-CCSS)

	Biotechnology [C	ore Course]
	BT 5B 03 – BIOPROCES	SS TECHNOLOGY
Time : Three Hours		Maximum: 30 Weightage
I. Objective Type Q	uestions. Answer all ^{twelve} qu	estions:
	of trickling filters is:	
(a)	Ponding occurs.	
(b)	Bio-coenoses develops within	the reactor.
(c)	Specific area of voidage is less	
(d)	The action is not filtration.	
2. One of the	following is used in waste wate	er treatment:
(a)	Air lift reactors.	(b) Membrane bioreactors.
(c)	Hollow fiber reactors.	(d) Continuously stirred tank reactor.
3. In glycerol	production, the inhibitor effec	t is:
(a)	Glycerol-3-phosphate produc	tion is repressed.
(b)	Conversion of glycerol-3-phos	sphate to glycerol is repressed.
(c)	Conversion of glycerol-3-phos	sphate to DHAP is repressed.
(d)	Acetaldehyde production is r	epressed.
4. In an enzy	me assay, when [S] is much le	ss than the Km, the rate :
(a)	Approaches Vm.	(b) Is independent of [S]
(c)) Is independent of [E].	(d) Is proportional to [S].
5. The mar	nnitol supplied in the incub	ation mixture of protoplast isolation functions
primarily		
(a) Source of energy.	(b) Buffer.

(c) Osmotic stabilizer.

(d) N-source.

Turn over

6. In fluidized bed reactors:

(a)	Temperature gradients as	re very high.						
(b)	Temperature is more or le	Temperature is more or less uniform.						
(c)	Hotspots are formed.	-						
(d)	Segregation of solids occu	rs.						
7. The rheole	ogical property of the mediu	m grown with Aspergillus	e Oraggo	C = 1 ·				
(a)	Newtonian.	(b) Pseudoplastic.	, <i>or yzue</i> a	iter 5 days is				
(c)	Casson plastic.							
8. Biologically	aerated filters are used fo							
(a)	Primary treatment for nitr	rification.						
(b)	Secondary treatment for d	enitrification.						
(c)	All the above.							
(d)	None of the above.							
9. The function	n of penicillin in production	of glutamic acid by Micro	ococcus al	lutarious :				
(a)	Increase glutamic acid prod	luction.	reoccus gi	anaricus is :				
(b)	Increase the purity of gluta	mic acid.						
(c)	Act as inducer.							
(d)	Increase cell wall permeabi	lity for glutamic acid relea	ase.					
	of microbial cell death is :							
(a) A	rithmetic.	(b) Exponential.						
(c) L	ogarithmic	(d) None of the above.						
11. Oxygen dema	and increases when ;	, ,						
(a) ₁	When the carbon source con	centration is more reduce	d.					
(p) ⁷	When the carbon source is m	ore reduced.						
(c) T	he carbon source concentra	tion is less reduced.						
(d) C	Carbon source is less reduced	1.						
12. SWL contains	s:							
(a) 1%	sugar.	(b) 1.5% sugar.						
(c) 2%	sugar	(d) 2.5% sugar.						
			(12 x	= 3 weightage)				
			(14 11	- o weightage)				

II. Short Answer Type Questions. Answer all nine questions:

- 13. SSF.
- 14. Antifoam agents.
- 15. SCP.
- 16. Auxotrophic mutants.
- 17. RBC.
- 18. Interferon.
- 19. Vanilline production.
- 20. Crosslinking.
- 21. Trickling filters.

 $(9 \times 1 = 9 \text{ weightage})$

III. Short Essay or Paragraph Questions. Answer any five questions. :

- 22. Discuss the various methods of cell disruption.
- 23. Explain the principle of Affinity chromatography and its applications.
- 24. What is secondary screening? Discuss the various methods of secondary screening.

3

- 25. Differentiate between Batch, Fed batch and Continuous culture systems.
- 26. With a neat diagram, explain the various parts of the bioreactor and their functions.
- 27. Discuss hairy root culture.
- 28. Differentiate between a CSTR and packed bed reactor.

 $(5 \times 2 = 10 \text{ weightage})$

IV. Essay questions. Answer any two questions out of three:

- 29. Explain the various methods of strain improvement. Discuss each with specific examples.
- 30. Discuss in detail the various methods of enzyme immobilization. What are the advantages?
- 31. Explain the use of microbes in liquid waste disposal.

 $(2 \times 4 = 8 \text{ weightage})$