C 41491

(Pages 2)

Name.....

Reg. No.....

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2013

(CCSS)

Microbiology

MB 4C 16 (P)-BIOSTATISTICS (PRACTICAL)

Time : Two Hours

Maximum: 10 Weightage

Answer any five questions. Each carries a weightage of 2.

1.	. (a) Calculate the mean and standard deviation for the following data :								
	Age class : $2O - 30\ 30 - 40\ 40 - 50\ 5O - 60\ 6O - 70\ 70 - 80\ 80 - 90$								
	No. of members :	3	61	132	153	14	0	51	2
	(b) Find the Median of the following frequency distribution :								
	Class	20 — 30	30 —	- 40 40 -	- 50	50 — 0	60 6 0 —	- 70	
	Frequency :	3	5	5	20	10		5	
2.	Draw Histogram and Ogiv	e for the fo	llowing	data and	hence o	btain Q	uartiles	:	
	Class : O – 10	1 O – 20	20-	- 30 30-	- 40 40	0 – 50	50-	60 60) – 70
	Frequency : 4	8	11	1	5	12	6		3
3.	(a) Find the Geometric me	an for the f	ollowing	g series o	f monthl	y in c on	ne of a b	atch of	f families :
	180, 250, 490, 120	, 1400, 7,00	00, 1050), 150, 36	50 , 100 , 8	0, 200,	500 240	Э.	
	(b) Calculate Harmonic me	ean for the	followi	ng series	:				
	15, 250, 15.7, 157, 1.57, 105.7, 10.5, 1.06, 25.7 , 0.257.								
4.	Fit a Binomial distribution	to the follo	wing da	ata and co	ompute tl	ne expe	cted fre	quencie	es I
	X (No. of heads) :	0	1	2	3	4	5	6	7
	Frequency	7	6	19	35	30	23	7	1
5.	Fit a Normal distribution fo	or the follow	wing. Al	so, comp	ute the e	xpected	normal	freque	ncies
	X : 60 - 65	5 65 - 70 7	70 – 75	5 75 – 8	80 80 -	85 85	- 90 9	0 – 95	95 – 100
	No. of cells : 3	21	150	335	32	6	135	26	4

Turn over

6. Calculate the correlation coefficient and obtain the lines of regression for the following data : Estimate the value of Y when X = 6.2.

 X:1
 2
 3
 4
 5
 6
 7
 8
 9

 Y:9
 8
 10
 12
 11
 13
 14
 16
 15

7. Test whether the treatments and varieties are homogeneous :

Varieties	Treatments		
	1	2	3
А	16	64	40
В	56	72	56
C	12	56	28

8. Test whether varietal effects are significant to the following data :

Varieties					
А	8	10	12	8	7
В	12	11	9	14	4
С	18	12	16	6	8
D	13	9	12	16	15

9. The following table gives the number of good and bad parts produced by workers in each of 3 shifts in a particular firm. Is there any association between the shift and quality of parts produced by the factory ?

Shift	Good	Bad
Day	900	130
Evening	700	170
Night	400	200

10. Given the following data on three variables :

X _i	5	8	12	3	6
X_2	3	6	10	5	2
X ₃	8	12	6	4	10

Calculate the partial correlation coefficients $r_{12.3}$, $r_{13.2}$ and $r_{23.1}$