D 2015

Time : Three Hours

(Pages 2)

Name

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2009

Computer Science (Main)

CS 104—THEORETICAL COMPUTER SCIENCE

(2005 Admission)

Maximum : 80 Marks

Part A

Answer any five questions.

- 1. Find the DFA that accepts (i) $a^*b + b^*a$; (ii) set of strings over $\{a, b\}$ beginning and ending with a.
- 2. Describe the procedure of finding FA for given regular expression.
- 3. Outline the procedure of converting the set of productions of a CFG to CNF. Give an example.
- 4. State pumping lemma for CFG and show that $\{a^{\prime\prime\prime}/i1\}$ is not CFL.
- 5. Find a TM to accept ($O^n n$
- 6. State and informally prove Chomsky's hierarchy.
- 7. Find the conjunctive normal form of (1 P v 1 Q) (1 P v 1 Q) (1 P v 1 Q)

 $(5 \times 8 = 40 \text{ marks})$

Part B

Answer any four questions.

8. Find the DFA equivalent to the given NFA with E:

Input	Е	0	1
State			
A (starting)	{B}	{ A }	Φ
В	{D}	{ C }	Φ
С	Φ	Φ	{B}
D (final)	Φ	{D}	

Turn over

Input	a	b
State		
1 (starting)	{2}	Φ
2	{1}	{3}
3 (final)	{2}	{4}
4	{4}	{5}

ാത

 cm

)(O)

(b) State pumping lemma for regular sets and list the closure properties of regular sets.

10. Construct a PDA to accept $a^{i}b^{-1}I^{i} > 1$ } by emptying stack contents. Also construct a final state PDA accepting the same set of strings.

11. (a) Find TM to accept
$$\{a^n b^n c^{n \prod_n} \}$$

(b) Design a TM to add two integers.

- 12. Discuss P, NP, NP-complete problems giving one example for each.
- 13. (a) Explain any one method to making inferences in predicate calculus.
 - (b) Is the following sentences true ? If philosophers are not money minded and some **m** ney minded persons are not clever, then there are persons who are neither philosophers nor . 7er.

(4 x 10 = 40 marks)